首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The increasing demand for recombinant therapeutic proteins highlights the need to constantly improve the efficiency and yield of these biopharmaceutical products from mammalian cells, which is fully achievable only through proper understanding of cellular functioning. Towards this end, the current study exploited a combined metabolomics and in silico modeling approach to gain a deeper insight into the cellular mechanisms of Chinese hamster ovary (CHO) fed-batch cultures. Initially, extracellular and intracellular metabolite profiling analysis shortlisted key metabolites associated with cell growth limitation within the energy, glutathione, and glycerophospholipid pathways that have distinct changes at the exponential-stationary transition phase of the cultures. In addition, biomass compositional analysis newly revealed different amino acid content in the CHO cells from other mammalian cells, indicating the significance of accurate protein composition data in metabolite balancing across required nutrient assimilation, metabolic utilization, and cell growth. Subsequent in silico modeling of CHO cells characterized internal metabolic behaviors attaining physiological changes during growth and non-growth phases, thereby allowing us to explore relevant pathways to growth limitation and identify major growth-limiting factors including the oxidative stress and depletion of lipid metabolites. Such key information on growth-related mechanisms derived from the current approach can potentially guide the development of new strategies to enhance CHO culture performance.  相似文献   

2.
A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in‐depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra‐ and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally, processes with the optimized media maintained an oxidizing intracellular environment, important for correct disulfide bond pairing, which likely contributed to reduced aggregate formation. These findings shed important understanding into how cells respond to process changes and can be useful to guide future development efforts to enhance productivity and improve product quality.  相似文献   

3.
The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17‐hydroxyprogesterone (17‐OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 106 cells mL?1 and the specific growth rate was 0.036 ± 0.004 h?1. The maximum MAb titer was 11.94 ± 4.81 μg mL?1 with an average specific MAb production rate of 0.273 ± 0.135 pg cell?1 h?1. A constant impeller tip speed criterion was used for the scale‐up. The specific growth rate (0.040 h?1) and the maximum viable cell density (1.89 × 106 cells mL?1) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T‐flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17‐OHP) and did not compromise the structural integrity of the MAb. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

4.
5.
Immunoglobin G with α‐2,6 sialylation has been reported to have an impact on antibody‐dependent cellular cytotoxicity and anti‐inflammatory efficacy. However, production of antibodies with α‐2,6 sialylation from Chinese hamster ovary cells is challenging due to the inaccessibility of sialyltransferases for the heavy chain N‐glycan site and the presence of exclusively α‐2,3 sialyltransferases. In this study, combining mutations on the Fc regions to allow sialyltransferase accessibility with overexpression of α‐2,6 sialyltransferase produced IgG with significant levels of both α‐2,6 and α‐2,3 sialylation. Therefore, ST3GAL4 and ST3GAL6 genes were disrupted by CRISPR/Cas9 to minimize the α‐2,3 sialylation. Sialidase treatment and SNA lectin blot indicated greatly increased α‐2,6 sialylation level relative to α‐2,3 sialylation for the α‐2,3 sialyltransferase knockouts when combined with α‐2,6 sialyltransferase overexpression. Indeed, α‐2,3 linked sialic acids were not detected on IgG produced from the α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase overexpression pools. Finally, glycoprofiling of IgG with four amino acid substitutions expressed from an α‐2,3 sialyltransferase knockout‐α‐2,6 sialyltransferase stable clone resulted in more than 77% sialylated glycans and more than 62% biantennary disialylated glycans as indicated by both MALDI‐TOF and LC‐ESI‐MS. Engineered antibodies from these modified Chinese hamster ovary cell lines will provide biotechnologists with IgGs containing N‐glycans with different structural variations for examining the role of glycosylation on protein performance.  相似文献   

6.
7.
Large‐scale bioreactors for the production of monoclonal antibodies reach volumes of up to 25 000 L. With increasing bioreactor size, mixing is however affected negatively, resulting in the formation of gradients throughout the reactor. These gradients can adversely affect process performance at large scale. Since mammalian cells are sensitive to changes in pH, this study investigated the effects of pH gradients on process performance. A 2‐Compartment System was established for this purpose to expose only a fraction of the cell population to pH excursions and thereby mimicking a large‐scale bioreactor. Cells were exposed to repeated pH amplitudes of 0.4 units (pH 7.3), which resulted in decreased viable cell counts, as well as the inhibition of the lactate metabolic shift. These effects were furthermore accompanied by increased absolute lactate levels. Continuous assessment of molecular attributes of the expressed target protein revealed that subunit assembly or N‐glycosylation patterns were only slightly influenced by the pH excursions. The exposure of more cells to the same pH amplitudes further impaired process performance, indicating this is an important factor, which influences the impact of pH inhomogeneity. This knowledge can aid in the design of pH control strategies to minimize the effects of pH inhomogeneity in large‐scale bioreactors.  相似文献   

8.
We describe the development and scale‐up of a novel two chain immunotoxin refolding process. This work provides a case study comparing a clinical manufacturing process and the commercial process developed to replace it. While the clinical process produced high quality material, it suffered from low yield and high yield variability. A systematic approach to process development and understanding led to a number of improvements that were implemented in the commercial process. These include a shorter inclusion body recovery process, limiting the formation of an undesired deamidated species and the implementation of fed batch dilution refolding for increased refold titers. The use of a combination of urea, arginine and DTT for capture column cleaning restored the binding capacity of the capture step column and resulted in consistent capture step yields compared to the clinical process. Scalability is shown with data from 250 L and 950 L scale refolding processes. Compared to the clinical process it replaces, the commercial process demonstrated a greater than fivefold improvement in volumetric productivity at the 950 L refolding scale. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1380–1389, 2014  相似文献   

9.
10.
11.
12.
Transient gene expression (TGE) systems currently provide rapid and scalable (up to 100 L) methods for generating multigram quantities of recombinant heterologous proteins. Product titers of up to 1 g/L have been demonstrated in HEK293 cells 1 but reported yields from Chinese hamster ovary (CHO) cells are lower at ~300 mg/L. 2 We report on the establishment of an engineered CHOS cell line, which has been developed for TGE. This cell line has been engineered to express both X‐box binding protein (XBP‐1S) and endoplasmic reticulum oxidoreductase (ERO1‐Lα) and has been named CHOS‐XE. CHOS‐XE cells produced increased antibody (MAb) yields (5.3– 6.2 fold) in comparison to CHOS cells. Product quality was unchanged as assessed by size, charge, propensity to aggregate, major glycosylation species, and thermal stability. To further develop and test this TGE system, five commercial media were assessed, and one was shown to offer the greatest increase in antibody yields. With the addition of a commercial feed, MAb titers reached 875 mg/L. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:697–706, 2013  相似文献   

13.
In recent years, the number of complex but clinically effective biologicals such as multi‐specific antibody formats and fusion proteins has increased dramatically. However, compared to classical monoclonal antibodies (mAbs), these rather artificially designed therapeutic proteins have never undergone millions of years of evolution and thus often turn out to be difficult‐to‐express using mammalian expression systems such as Chinese hamster ovary (CHO) cells. To provide access to these sophisticated but effective drugs, host cell engineering of CHO production cell lines represents a promising approach to overcome low production yields. MicroRNAs (miRNAs) have recently gained much attention as next‐generation cell engineering tools. However, only very little is known about the capability of miRNAs to specifically increase production of difficult‐to‐express proteins. In a previous study we identified miR‐143 amongst others to improve protein production in CHO cells. Thus, the aim of the present study was to examine if miR‐143 might be suitable to improve production of low yield protein candidates. Both transient and stable overexpression of miR‐143 significantly improved protein production without negatively affecting cell growth and viability of different recombinant CHO cells. In addition, mitogen‐activated protein kinase 7 (MAPK7) was identified as a putative target gene of miR‐143‐3p in CHO cells. Finally, siRNA‐mediated knock‐down of MAPK7 could be demonstrated to phenocopy pro‐productive effects of miR‐143. In summary, our data suggest that miR‐143 might represent a novel genetic element to enhance production of difficult‐to‐express proteins in CHO cells which may be partly mediated by down‐regulation of MAPK7. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1046–1058, 2017  相似文献   

14.
Characterization of manufacturing processes is key to understanding the effects of process parameters on process performance and product quality. These studies are generally conducted using small‐scale model systems. Because of the importance of the results derived from these studies, the small‐scale model should be predictive of large scale. Typically, small‐scale bioreactors, which are considered superior to shake flasks in simulating large‐scale bioreactors, are used as the scale‐down models for characterizing mammalian cell culture processes. In this article, we describe a case study where a cell culture unit operation in bioreactors using one‐sided pH control and their satellites (small‐scale runs conducted using the same post‐inoculation cultures and nutrient feeds) in 3‐L bioreactors and shake flasks indicated that shake flasks mimicked the large‐scale performance better than 3‐L bioreactors. We detail here how multivariate analysis was used to make the pertinent assessment and to generate the hypothesis for refining the existing 3‐L scale‐down model. Relevant statistical techniques such as principal component analysis, partial least square, orthogonal partial least square, and discriminant analysis were used to identify the outliers and to determine the discriminatory variables responsible for performance differences at different scales. The resulting analysis, in combination with mass transfer principles, led to the hypothesis that observed similarities between 15,000‐L and shake flask runs, and differences between 15,000‐L and 3‐L runs, were due to pCO2 and pH values. This hypothesis was confirmed by changing the aeration strategy at 3‐L scale. By reducing the initial sparge rate in 3‐L bioreactor, process performance and product quality data moved closer to that of large scale. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1370–1380, 2015  相似文献   

15.
Monoclonal antibodies (mAbs) have been well established as potent therapeutic agents and are used to treat many different diseases. During cell culture production, antibody charge variants can be generated by cleavage of heavy chain (HC) C‐terminal lysine and proline amidation. Differences in levels of charge variants during manufacturing process changes make it challenging to demonstrate process comparability. In order to reduce heterogeneity and achieve consistent product quality, we generated and expressed antibodies with deletion of either HC C‐terminal lysine (‐K) or lysine and glycine (‐GK). Interestingly, clones that express antibodies lacking HC C‐terminal lysine (‐K) had considerably lower specific productivities compared to clones that expressed either wild type antibodies (WT) or antibodies lacking HC glycine and lysine (‐GK). While no measurable differences in antibody HC and LC mRNA levels, glycosylation and secretion were observed, our analysis suggests that the lower specific productivity of clones expressing antibody lacking HC C‐terminal lysine was due to slower antibody HC synthesis and faster antibody degradation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:786–794, 2017  相似文献   

16.
We describe a systematic approach to model CHO metabolism during biopharmaceutical production across a wide range of cell culture conditions. To this end, we applied the metabolic steady state concept. We analyzed and modeled the production rates of metabolites as a function of the specific growth rate. First, the total number of metabolic steady state phases and the location of the breakpoints were determined by recursive partitioning. For this, the smoothed derivative of the metabolic rates with respect to the growth rate were used followed by hierarchical clustering of the obtained partition. We then applied a piecewise regression to the metabolic rates with the previously determined number of phases. This allowed identifying the growth rates at which the cells underwent a metabolic shift. The resulting model with piecewise linear relationships between metabolic rates and the growth rate did well describe cellular metabolism in the fed‐batch cultures. Using the model structure and parameter values from a small‐scale cell culture (2 L) training dataset, it was possible to predict metabolic rates of new fed‐batch cultures just using the experimental specific growth rates. Such prediction was successful both at the laboratory scale with 2 L bioreactors but also at the production scale of 2000 L. This type of modeling provides a flexible framework to set a solid foundation for metabolic flux analysis and mechanistic type of modeling. Biotechnol. Bioeng. 2017;114: 785–797. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
20.
Four π‐extended phosphoniumfluorene electrolytes (π‐PFEs) are introduced as hole‐blocking layers (HBL) in inverted architecture planar perovskite solar cells with the structure of ITO/PEDOT:PSS/MAPbI3/PCBM/HBL/Ag. The deep‐lying highest occupied molecular orbital energy level of the π‐PFEs effectively blocks holes, decreasing contact recombination. It is demonstrated that the incorporation of π‐PFEs introduces a dipole moment at the PCBM/Ag interface, resulting in significant enhancement of the built‐in potential of the device. This enhancement results in an increase in the open‐circuit voltage of the device by up to 120 mV, when compared to the commonly used bathocuproine HBL. The results are confirmed both experimentally and by numerical simulation. This work demonstrates that interfacial engineering of the transport layer/contact interface by small molecule electrolytes is a promising route to suppress nonradiative recombination in perovskite devices and compensates for a nonideal energetic alignment at the hole‐transport layer/perovskite interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号