首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The enzymatic hydrolysis of steam‐exploded sugarcane bagasse (SESB) was investigated using enzymatic extracts (EE) and whole fermentation media (WM), produced in‐house, from Aspergillus niger 3T5B8 and Trichoderma reesei Rut‐C30 cultivated on wheat bran under solid‐state fermentation (SSF). A detailed and quantitative comparison of the different hydrolysis conditions tested was carried out using the Chrastil approach for modeling enzymatic reactions by fitting the experimental data of total reducing sugar (TRS) released according to hydrolysis time. Conversion of SESB using A. niger enzymatic complex were up to 3.2‐fold higher (in terms of TRS) than T. reesei at similar enzyme loadings, which could be correlated to the higher β‐glucosidase levels (up to 35‐fold higher) of A. niger enzymatic complex. Conversion yields after 72 h exceeded 40% in terms of TRS when the WM was supplemented with a low dosage of a commercial enzyme preparation. When the combination of WM (from either T. reesei or A. niger) and commercial cellulase was used, the dosage of the commercial enzyme could be reduced by half, while still providing a hydrolysis that was up to 36% more efficient. Furthermore, SESB hydrolysis using either EE or WM resulted in similar yields, indicating that the enzyme extraction/filtration steps could be eliminated from the overall process. This procedure is highly advantageous in terms of reduced enzyme and process costs, and also avoids the generation of unnecessary effluent streams. Thus, the enzymatic conversion of SESB using the WM from SSF is cost‐effective and compatible with the biorefinery concept. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1430–1440, 2013  相似文献   

4.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

5.
The aim of this study was to compare the performance of the enzymes produced by Trichoderma reesei Rut C30 and the good extracellular β-glucosidase-producing mutant Trichoderma atroviride TUB F-1663 to that of commercial preparations in the enzymatic hydrolysis and the simultaneous saccharification and fermentation (SSF) of steam-pretreated spruce (SPS).The concentrated TUB F-1663 enzyme was found to be the most efficient in the hydrolysis of washed SPS at 50 g/L water-insoluble solids (WIS) in terms of the glucose produced (18.5 g/L), even in comparison with commercial cellulases (14.1–16.7 g/L). The enzyme preparations were studied at low enzyme loadings (5 FPU/g WIS) in SSF to produce ethanol from SPS. The enzyme supernatant and whole fermentation broth of T. atroviride as well as the whole broth of T. reesei proved to be as efficient in SSF as the commercial cellulase mixtures (ethanol yields of 61–76% of the theoretical were achieved), while low ethanol yields (<40%) were obtained with the β-glucosidase-deficient T. reesei supernatant.Therefore, it seems, that instead of using commercial cellulases, the TUB F-1663 enzymes and the whole broth of Rut C30 may be produced on-site, using a process stream as carbon source, and employed directly in the biomass-to-bioethanol process.  相似文献   

6.
7.
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7‐3, GHF7‐5, and GHF7‐6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full‐length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus‐insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7‐3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β‐glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell‐1), beta‐glucosidase (β‐glu), and laccase (LacA). GHF7‐3 was the only GHF7 to enhance glucose release by Cell‐1 and β‐glu. Finally, GHF7‐3, Cell‐1, and β‐glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β‐glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7‐3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.  相似文献   

8.
Maximum cellulase production was sought by comparing the activities of the cellulases produced by differentTrichoderma reesei strains andAspergillus niger. Trichoderma reesei Rut-C30 showed higher cellulase activity than otherTrichoderma reesei strains andAspergillus niger that was isolated from soil. By optimizing the cultivation condition during shake flask culture, higher cellulase production could be achieved. The FP (filter paper) activity of 3.7 U/ml and CMCase (Carboxymethylcellulase) activity of 60 U/ml were obtained from shake flask culture. When it was grown in 2.5L fermentor, where pH and DO levels are controlled, the Enzyme activities were 133.35 U/ml (CMCase) and 11.67 U./ml (FP), respectively. Ammonium sulfate precipitation method was used to recover enzymes from fermentation broth. The dried cellulase powder showed 3074.9 U/g of CMCase activity and 166.7 U/g of FP activity with 83.5% CMCase recovery.  相似文献   

9.
Protoplast fusion was used to obtain a higher production of lignocellulolytic enzymes with protoplast fusion in Trichoderma reesei. The fusant strain T. reesei JL6 was obtained from protoplast fusion from T. reesei strains QM9414, MCG77, and Rut C-30. Filter paper activity of T. reesei JL6 increased by 18 % compared with that of Rut C-30. β-Glucosidase, hemicellulase and pectinase activities of T. reesei JL6 were also higher. The former activity was 0.39 Uml?1, while those of QM9414, MCG77, and Rut C-30 were 0.13, 0.11, and 0.16 Uml?1, respectively. Pectinase and hemicellulase activities of JL6 were 5.4 and 15.6 Uml?1, respectively, which were slightly higher than those of the parents. The effects of corn stover and wheat bran carbon sources on the cellulase production and growth curve of T. reesei JL6 were also investigated.  相似文献   

10.
The conditions of the filter paper activity (FPA) assay were standardized for solid substrate fermentation (SSF). The FPA is a relative measure of the overall cellulose hydrolysing capacity of microbial cellulase preparations, thus reliable and comparable data may be obtained only under standardized conditions. The standardization developed for submerged fermentation (SF) cannot be translated directly to SSF. In SSF, the FPA is strongly dependent on the extraction volume and on the dilution of the enzyme in the assay. The optimal extraction volume was substrate dependent in SSF of corn fiber, spent brewing grains and wheat straw for cellulase production by Trichoderma reesei Rut C30. Other cellulolytic enzyme assays (endoglucanase, beta-glucosidase and xylanase) were much less sensitive to the extraction volume.  相似文献   

11.
To investigate whether enzyme production can be enhanced in the Trichoderma reesei industrial hyperproducer strain RUT C30 by manipulation of cellulase regulation, the positive regulator Xyr1 was constitutively expressed under the control of the strong T. reesei pdc promoter, resulting in significantly enhanced cellulase activity in the transformant during growth on cellulose. In addition, constitutive expression of xyr1 combined with downregulation of the negative regulator encoding gene ace1 further increased cellulase and xylanase activities. Compared with RUT C30, the resulting transformant exhibited 103, 114, and 134 % greater total secreted protein levels, filter paper activity, and CMCase activity, respectively. Surprisingly, strong increases in xyr1 basal expression levels resulted in very high levels of CMCase activity during growth on glucose. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression, and suggest an attractive new single-step approach for increasing total cellulase productivity in T. reesei.  相似文献   

12.
The Production of cellulases and Hemicellulases was studied with Trichoderma reesei Rut C-30, This organism produced, together with high cellulase activities, considerable amounts of xylanases and β-glucosidase. Three cellulose concentration (1, 2.5, and 5.0%) were examined to determined the maximum levels of cellulase activity obtainable in submerged culture. Temperature and pH profiling was used to increase cell mass to maximum levels within two days and thereby enhancing fermentor productivity at higher substrate levels. The effect of temperature, pH, Tween-80 concentration, carbon sources, and substrate concentration on the ration of mycelial growth and extracellulose enzyme production are described.  相似文献   

13.
Summary An enzyme preparation from a mutant strain of Cellulomonas CS1-17 acts synergistically with low levels of Trichoderma reesei cellulase in saccharification of alkali-pretreated sugar cane bagasse and in assays of Filter Paper activity. Supplementation of the Cellulomonas preparation with 0.1 or 0.25 FPU.ml- of T. reesei cellulase provides a preparation approximately equivalent to one using T. reesei alone at 1 FPU.ml-1.  相似文献   

14.
A laboratory scale study to evaluate the potentiality of filamentous fungi for the production of cellulolytic enzymes using palm oil mill effluent (POME) as a basal medium was initiated. A total of 25 filamentous fungi in which 16 filamentous fungi were isolated and purified from oil palm industrial residues and 9 strains from laboratory stock were screened using POME with 1% total suspended solids. Trichoderma reesei RUT C-30 was identified as a potential strain for cellulolytic enzyme production as compared to other genera of Aspergillus, Penicillum, Rhizopus, Phanerochaete, Trichoderma and basidiomycete groups. The results showed that T. reesei RUT C-30 gave the highest filter paper cellulase and carboxy methyl cellulase activity of 0.917 and 2.51 U/ml respectively at day 5 of fermentation. Other parameters such as growth formation, pH, filterability and total biosolids were observed to evaluate the bioconversion process.  相似文献   

15.
The liposome containing cellulase from Trichoderma viride was prepared under the condition that an appreciable amount of cellulase was incorporated in lipid membranes. The liposomal cellulase and free enzyme were examined in their hydrolytic activities to insoluble cellulose powder CC31 in the acetate buffer solution (pH 4.8) of 15 w/w% [Bmim][Cl] (1‐butyl‐3‐methylimidazolium chloride). The mean diameter and size distribution of cellulase‐containing liposome were practically unchanged under the above condition. The free cellulase was deactivated more rapidly than the liposomal cellulase in catalyzing the hydrolysis of 2.0 g/l CC31 at 45°C in the presence of [Bmim][Cl] for 48 h. The activities of liposomal and free cellulase to cellobiose as soluble substrate were less susceptible to [Bmim][Cl] than their cellulolytic activities to CC31, meaning that β‐glucosidase is relatively stable among the three enzyme components of cellulase. The rate of glucose production could be appreciably improved by the pretreatment of CC31 with [Bmim][Cl] alone at 120°C for 30 min followed by the liposomal cellulase‐catalyzed hydrolysis of the substrate at 45°C at the [Bmim][Cl] concentration of 15 w/w%. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1190–1196, 2013  相似文献   

16.
Sophorose is a potent but expensive inducer for cellulase production. In this study the feasibility of using sophorolipids, natural lipids that contain sophorose, for cellulase induction was investigated. Enhanced cellulase production by Hypocrea jecorina Rut C30 grown on glycerol, a substrate without cellulase-inducing ability, was first confirmed by addition of the crude sophorolipids collected from Candida bombicola fermentation. Cocultures of H. jecorina Rut C30 and C. bombicola were then employed to evaluate the effects of coculture conditions: the cell concentration ratio between the two cultures, the concentration of vegetable oil (as lipid precursor for sophorolipid synthesis, in addition to glycerol as the primary carbon source), the presence of nitrogen source for growth, and the substitution of glucose for glycerol as the primary carbon source. Specific cellulase productivity of H. jecorina Rut C30 was significantly higher under the conditions that promoted sophorolipid production by C. bombicola. The ability of H. jecorina Rut C30 to degrade sophorolipids was also confirmed. The results of the study indicated that the sophorolipids produced by C. bombicola can be degraded by H. jecorina Rut C30 and the sophorose generated from the degradation can effectively induce the fungal cellulase synthesis.  相似文献   

17.
In an attempt to clarify the function of lactose in cellulase induction, experiments were carried out on cellulase formation by lactose along with other sugars in a resting cell system of Trichoderma reesei PC-3-7, a hypercellulase-producing mutant. Although lactose alone induces little cellulase under the conditions used, a synergistic effect on cellulase formation was observed following the respective addition of sophorose, cellobiose or galactose to lactose. The lactose consumption was more rapid when these sugars were added than in their absence. Furthermore, following lactose addition 10 h after the beginning of cultivation in the presence of cellobiose, cellulase formation was initiated with only a little lag, and lactose consumption started immediately, being complete in 14 h. \-Galactosidase induction experiments suggested that the rapid consumption of lactose is possibly not dependent on lactose degradation by the enzyme. From these results, it is suggested that lactose may function as an inducer for cellulase formation if it is taken up in the mycelium of T. reesei PC-3-7, and that sophorose, cellobiose or galactose may induce a putative lactose permease. *** DIRECT SUPPORT *** AG903066 00005  相似文献   

18.
The high production cost of cellulase is one of the limitations that hinder the commercialization of lignocellulose-based biorefineries. As one of the important cellulases, Neurospora crassa cellulase is not so intensively investigated as T. reesei cellulase. In this study, the cbh1gene (NCU07340) cloned from N. crassa was expressed in Pichia pastoris under the control of alcohol oxidase 1 (AOX1) promotor. Six transformants with the highest resistance to G418 were selected by two rounds of transformant screening, among which the most robust producer of the recombinant cellobiohydrolase I (CBHI) has an Avicelase activity of 0.22 U/mL. After fermentation optimization, it was improved to 0.30 U/mL. Interestingly, the optimal temperature and pH of the recombinant CBHI were 60°C and 7.2, respectively, and it was quite stable within the wide ranges of temperature and pH. This work is a good example for the future improvement and optimization of N. crassa cellulase.  相似文献   

19.
Ionic liquids (ILs) have been increasingly recognized as novel solvents for dissolution and pretreatment of cellulose. However, cellulases are inactivated in the presence of ILs, even when present at low concentrations. To more fully exploit the benefits of ILs it is critical to develop a compatible IL‐cellulases system in which the IL is able to effectively solubilize and activate the lignocellulosic biomass, and the cellulases possess high stability and activity. In this study, we investigated the stability and activity of a commercially available cellulases mixture in the presence of different concentrations of 1‐ethyl‐3‐methylimidazolium acetate ([Emim][OAc]). A mixture of cellulases and β‐glucosidase (Celluclast1.5L, from Trichoderma reesei, and Novozyme188, from Aspergillus niger, respectively) retained 77% and 65% of its original activity after being pre‐incubated in 15% and 20% (w/v) IL solutions, respectively, at 50°C for 3 h. The cellulases mixture also retained high activity in 15% [Emim][OAc] to hydrolyze Avicel, a model substrate for cellulose analysis, with conversion efficiency of approximately 91%. Notably, the presence of different amounts of yellow poplar lignin did not interfere significantly with the enzymatic hydrolysis of Avicel. Using this IL‐cellulase system (15% [Emim][OAc]), the saccharification of yellow poplar biomass was also significantly improved (33%) compared to the untreated control (3%) during the first hour of enzymatic hydrolysis. Together, these findings provide compelling evidence that [Emim][OAc] was compatible with the cellulase mixture, and this compatible IL‐cellulases system is promising for efficient activation and hydrolysis of native biomass to produce biofuels and co‐products from the individual biomass components. Bioeng. 2011; 108:1042–1048. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Aims: To characterize the duel activities of a glycosyl hydrolase family 3 β‐glucosidase/xylosidase from rumen bacterial metagenome and to investigate the capabilities of its β‐d ‐xylosidase activities for saccharification of hemicellulosic xylans. Methods and Results: A β‐glucosidase/xylosidase gene RuBGX1 was cloned from yak (Bos grunniens) rumen using the metagenomic technology. Recombinant RuBGX1, expressed in Escherichia coli, demonstrated high hydrolytic activities on both p‐nitrophenyl‐β‐d ‐glucopyranoside (pNP‐Glc) and p‐nitrophenyl‐β‐d ‐xylopyranoside (pNP‐Xyl) substrates. Analysis of the kinetic properties indicated that RuBGX1 had a lower affinity for pNP‐Glc substrate as the Km was 0·164 mmol l?1 for pNP‐Glc and 0·03 mmol l?1 for pNP‐Xyl at pH 6·0 and 50°C, respectively. The capabilities of RuBGX1 β‐xylosidase for hydrolysis of xylooligosaccharide substrates were further investigated using an endoxylanase‐coupled assay. Hydrolysis time courses illustrated that a significant increase (about 50%) in the reducing sugars, including xylobiose, xylotriose and xylotetraose, was achieved by supplementing endoxylanase with RuBGX1. Enzymatic product analysis using high‐performance anion‐exchange chromatography‐pulsed amperometric detection showed that RuBGX1 could release xyloses from intermediate xylooligosaccharides produced by endoxylanase. Conclusions: The RuBGX1 shows β‐glucosidase activity in hydrolysis of cello‐oligosaccharides; meanwhile, it has β‐xylosidase activity and functions synergistically with endoxylanase to promote the degradation of hemicellulosic xylans. Significance and Impact of the study: This was the first to report the β‐xylosidase activity of family 3 β‐glucosidase/xylosidase functioned in the degradation of hemicellulosic xylans. The bifunctional β‐glucosidase/xylosidase property of RuBGX1 can be used in simultaneous saccharification of cellulose and xylan into fermentable glucose and xylose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号