首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用PAMAM dendrimers作为DNA运送载体的体外研究   总被引:3,自引:0,他引:3  
StarburstTM PAMAM dendrimers分子是一类新型的高分枝、辐射状对称的树状高分子,在生理条件下其表面具有高密度的正电荷,可以通过静电相互作用与核酸形成复合物后,介导遗传物质进入细胞.研究了G3, G3.5, G5, G7, G7.5, G9各代dendrimers分子与DNA结合后介导其转染细胞的能力,并初步评价这种复合物转染对细胞活力的影响.实验证实,全代的PAMAM dendrmers皆可与DNA结合,并可在体外培养的细胞中介导高效的DNA转染.PAMAM dendrimer/DNA复合物很稳定,在较大的pH值变化范围内(pH 2~10)不解离.PAMAM dendrimers可保护与之复合的DNA分子免受限制性内切酶的降解.在一定的电荷比范围内,高代数的dendrimers分子与DNA形成的复合物对培养细胞的转染效率高于低代数dendrimer分子,复合物所介导的转染效率在不同的细胞系之间也有差异.在有效作用浓度范围内(≤1.3×10-1 g/L),PAMAM dendrimers/DNA复合物对被转染细胞无毒性.但是,未与DNA复合的dendrimers分子在较低浓度时则表现出毒性,表明StarburstTM PAMAM dendrimers分子可作为新型的低毒非病毒DNA载体,用于介导DNA对体外培养细胞的转染. 这些前期观察,为将纳米级高分子聚合物dendrimers分子作为基因转运载体应用于体内提供了初步的实验依据.  相似文献   

2.
The objective of this study was to determine the effect of ethylenediamine core PAMAM dendrimers, on the release of nifedipine suspended in aqueous gels and to correlate release to the increase in solubility afforded by the dendrimers. Drug release from aqueous 5% HPMC gels containing nifedipine (2% wt/vol) through 0.2-μm membranes was measured using Enhancer cells and 50% ethanolic solution as the receptor medium. The release from gels containing PAMAM G-3 and G-5 (0.25%–1% wt/vol) was compared with gels containing the cosolvent isopropyl alcohol (10%–80% vol/vol). PAMAM dendrimers significantly increased the solubility of nifedipine. This caused a significant increase in the release rate of nifedipine from the gel suspensions. The increase in drug release depended on the concentration and generation size of the dendrimers added. For higher generations (G-5) lower concentrations were needed to obtain equivalent increases in release. Although the increase in solubility and release was not as high as from gels containing high concentrations of the cosolvent isopropyl alcohol, the dendrimers prevented the recrystallization of the drug that was observed when the gels containing isopropyl alcohol were left open. Published: October 24, 2005  相似文献   

3.
Oxaliplatin (OXA) was coupled to PEGylated polyamidoamine dendrimers of fourth generation (G4-PEG@OXA) in the comparison to PEGylated ones of odd generation (G3.5-PEG@OXA). Proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy were used to confirm the successful incorporation of OXA as well as the synthesis of carrier systems. Both two types of carrier systems exhibited in sphere nanoparticle shape with size of less than 100 nm that was in the range being able to cause toxicity on cancer cells. The average drug loading efficiency (DLE) of G4-PEG@OXA was obtained at 84.63% that was higher than DLE of G3.5-PEG of 75.69%. The release kinetic of G4-PEG@OXA and G3.5-PEG@OXA did not show any burst release phenomenon while free OXA was released over 40% at the first hour. The sustainable release of OXA was achieved when it was encapsulated in these carriers, but the G4 generation liberated OXA (3.4%-6.4%) slower than G3.5 one (11.9%-22.8%). The in vitro cytotoxicities of G4-PEG@OXA were evaluated in HeLa cell lines using resazurin assay and live/dead staining test. Although the free OXA showed a rather moderate killing ability, the G4-PEG@OXA still displayed the low viability of HeLa that was better to the result of G3.5-PEG@OXA due to released OXA amount. The benefit of this system was to overcome the burst release phenomenon to minimize OXA toxicity without compromising its efficiency.  相似文献   

4.
In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure.  相似文献   

5.
The interaction mechanism of lipopeptide antibiotic daptomycin and polyamidoamine (PAMAM) dendrimers was studied using fluorescence spectroscopy. The fluorescence changes observed are associated with daptomycin–dendrimer interactions. The binding isotherms were constructed by plotting the fluorescence difference at 460 nm from kynurenine (Kyn‐13) of daptomycin in the presence and absence of dendrimer. A one‐site and two‐site binding model were quantitatively generated to estimate binding capacity and affinity constants from the isotherms. The shape of the binding isotherm and the dependence of the estimated capacity constants on dendrimer sizes and solvent pH values provide meaningful insight into the mechanism of interactions. A one‐site binding model adequately describes the binding isotherm obtained under a variety of experimental conditions with dendrimers of various sizes in the optimal binding pH region 3.5 to 4.5. Comparing the pH‐dependent binding capacity with the ionization profiles of daptomycin and dendrimer, the ionized aspartic acid residue (Asp‐9) of daptomycin primarily interact with PAMAM cationic surface amine. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Many oral care products incorporate an antibacterial compound to prevent the formation of dental plaque which predisposes teeth to dental caries or periodontal disease []. Triclosan (TCN) is a commonly used antiplaque agent in toothpastes []. Strategies to increase the delivery efficiency of antibacterials using formulation aids such as polyamidoamine (PAMAM) dendrimers are of interest.

Solubilisation studies over the pH range 5-12 demonstrated an increase in the level of TCN solubilised with increasing dendrimer concentration (1 mM–5 mM). However, the dendrimer was unable to enhance TCN solubility at lower pH values and the solubilising effect observed was attributed to the ionization of TCN (pKa 8.14) resulting from dendrimer induced pH changes.

End group modification of G3 PAMAM dendrimer with phenylalanine in order to promote solubility through π–π stacking between TCN and the amino acid has been carried out. Phenylalanine:G3 PAMAM conjugates of different ratios (32:1, 21:1, 16:1) were synthesized. The fully conjugated dendrimer (32:1) had poor aqueous solubility, whereas the 21:1 and 16:1 dendrimer conjugates were water soluble. The 21:1 conjugate was tested for its ability to solubilise TCN, however, again there was no increase over control buffer solutions of the same pH. An alternative approach under investigation is to directly conjugate TCN to PAMAM dendrimers via a hydrolysable linkage.  相似文献   

7.
8.
DNA dendrimers have achieved increasing attention recently. Previously reported DNA dendrimers used Y-DNA as monomers. Tetrahedron DNA is a rigid tetrahedral cage made of DNA. Herein, we use tetrahedron DNA as monomers to prepare tetrahedron DNA dendrimers. The prepared tetrahedron DNA dendrimers have larger size compared with those made of Y-DNA. In addition, thanks to the central cavity of tetrahedron DNA monomers, some nanoscale structures (e.g., gold nanoparticles) can be encapsulated within tetrahedron DNA monomers. Tetrahedron DNA encapsulated with gold nanoparticles can be further assembled into dendrimers, guiding gold nanoparticles into clusters.  相似文献   

9.
G4 and G5 polyamidoamine dendrimers solvated with explicit water, counterions and NaCl ions (0.15, 1 M) were simulated at two levels of protonation, which mimic their electrostatic charges at pH 5 and 7. We used the previously parametrised coarse-grained dendrimer model which had predicted the experimentally measured and theoretically calculated size and internal structure of the dendrimer at different pH values. In this study, addition of ≤ 1 M NaCl does not significantly modulate the dendrimer size, in agreement with experiments and other theoretical studies. In particular, added salt ions do not change the dense-shell and dense-core structures of dendrimers without salt, respectively, at pH 5 and 7. Besides counterions, only a few excess ions penetrate and occupy the dendrimer interior, leading to unchanged volume of the inner cavity in the dendrimer core. These results indicate that addition of ≤ 1 M NaCl does not modulate the efficiency of encapsulating hydrophobic drugs or compounds.  相似文献   

10.
Conventional dendrimers are spherical symmetrically branched polymers ending with active surface functional groups. Polyamidoamine (PAMAM) dendrimers have been widely studied as gene delivery vectors and have proven effective at delivering DNA to cells in vitro. However, higher‐generation (G4‐G8) PAMAM dendrimers exhibit toxicity due to their high cationic charge density and this has limited their application in vitro and in vivo. Another limitation arises when attempts are made to functionalize spherical dendrimers as targeting moieties cannot be site‐specifically attached. Therefore, we propose that lower‐generation asymmetric dendrimers, which are likely devoid of toxicity and to which site‐specific attachment of targeting ligands can be achieved, would be a viable alternative to currently available dendrimers. We synthesized and characterized a series of peptide‐based asymmetric dendrimers and compared their toxicity profile and ability to condense DNA to spherical PAMAM G1 dendrimers. We show that asymmetric dendrimers are minimally toxic and condense DNA into stable toroids which have been reported necessary for efficient cell transfection. This paves the way for these systems to be conjugated with targeting ligands for gene delivery in vitro and in vivo. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Important properties for a biosensor are the sensitive detection of target DNA at low concentration, the specific and accurate distinction of the target and other DNA having a similar sequence, and measurement capability over a wide range of target concentrations. To these ends, generation 3 polyamidoamine (PAMAM) dendrimer was used to improve DNA chip properties. PAMAM dendrimer surface amine moieties were modified to biotin and immobilized on glass slides using biotin-avidin conjugation. The surface morphologies of the avidin-biotin-dendrimer complexes were observed using atomic force microscopy and scanning electron microscopy. Detection sensitivity for fluorescence-labeled target DNA increased approximately 4-fold by the dendrimer coating. Dendrimer coating also markedly improved the dynamic range and detection of single nucleotide polymorphisms. Dendrimer complex morphology had little effect on the sensitivity.  相似文献   

12.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

13.
The BLM-system for studying the electrophysical properties of bilayer lipid membranes (BLM) was applied to investigate interactions between polyamidoamine (PAMAM) dendrimers and lipid bilayers. The cationic PAMAM G5 dendrimer effectively disrupted planar phosphatidylcholine membranes, while the hydroxyl PAMAM-OH G5 and carboxyl PAMAM G4.5 dendrimers had no significant effect on them.  相似文献   

14.
The interactions between dendrimers and different types of drugs are nowadays one of the most actively investigated areas of the pharmaceutical sciences. The interactions between dendrimers and drugs can be divided into: internal encapsulation, external electrostatic interaction, and covalent conjugation. In the present study, we investigated the potential of poly(amidoamine) (PAMAM) dendrimers for solubility of four iminodiacetic acid derivatives. We reported that PAMAM dendrimers contribute to significant solubility enhancement of iminodiacetic acid analogues. The nature of the dendrimer–drug complexes was investigated by 1H NMR and 2D-NOESY spectroscopy. The 1H NMR analysis proved that the water-soluble supramolecular structure of the complex was formed on the basis of ionic interactions between terminal amine groups of dendrimers and carboxyl groups of drug molecules, as well as internal encapsulation. The 2D-NOESY analysis revealed interactions between the primary amine groups of PAMAM dendrimers and the analogues of iminodiacetic acid. The results of solubility studies together with 1H NMR and 2D-NOESY experiments suggest that the interactions between PAMAM dendrimers of generation 1–4 and derivatives of iminodiacetic acid are based on electrostatic interactions and internal encapsulation.  相似文献   

15.
The specific features of liquid-crystalline dispersions formed by double-stranded DNA molecules interacting with polypropylenimine dendrimers of five generations (G1—G5) in aqueous saline solutions of various ionic strengths were studied. It was demonstrated that the binding of dendrimer molecules to DNA led to the formation of dispersions independently of solution ionic strength and dendrimer structure. By the example of a generation 4 dendrimer, it was shown that the shape of dispersion particles of the (DNA-dendrimer G4) complex were close to a sphere with a diameter of 300–400 nm. The boundary conditions (ionic strength of solution and molecular mass of dendrimer) for the formation of optically active (cholesteric) and optically inactive (DNA-dendrimer) dispersions were determined by circular dichroism spectroscopy. The dispersions formed by dendrimers G1–G3 and G5 were optically inactive. Dendrimers G4 formed liquid-crystalline dispersions of two types. Cholesteric liquid-crystalline dispersions were formed in high ionic strength solutions (μ > 0.4), whereas the dispersions formed in low and intermediate ionic strength solutions (μ < 0.4) lacked an intense negative band in their circular dichroism spectra. The effect of molecular crowding on both the (DNA-dendrimer G4) binding efficiency and the pattern of spatial packing of the (DNA-dendrimer G4) complexes in the liquid-crystalline dispersion particles was demonstrated. The factors determining the structural polymorphism of the liquid-crystalline dispersions of (DNA-dendrimer) complexes are postulated.  相似文献   

16.
This paper presents a novel hormone‐based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12‐mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti‐PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1‐ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide/N‐hydroxysuccinimide (EDC/NHS) couple, self‐assembled monolayer structure from one of the other NH2 sites. The immobilization of anti‐PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC–NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10–60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:815–822, 2015  相似文献   

17.
RNAi-based gene therapy has been recently considered as a promising approach against cancer. Targeted delivery of drug, gene or therapeutic RNAi-based systems to tumor cells is one of the important issues in order to reduce side effects on normal cells. Several strategies have been developed to improve the safety and selectivity of cancer treatments including antibodies, peptides and recently aptamers with various attractive characteristics including higher target specificity, affinity and reduced toxicity. Here we described a novel targeted delivery platform comprising modified PAMAM with 10-bromodecanoic acid (10C) and 10C-PEG for improvement of transfection efficiency, AS1411 aptamer for targeting nucleolin ligand on target cancer cells and shRNA plasmid for specific knockdown of Bcl-xL protein. Modified vector could significantly improve the transfection efficiency even after covalent or non-covalent aptamer binding compared to the non-targeted vector in A549 cells. The results of gene silencing and apoptosis assay indicated that our targeted shRNA delivery system could efficiently down-regulate the Bcl-xL expression up to 25% and induce 14% late apoptosis in target cancer cells with strong cell selectivity. This study proposed a novel targeted non-viral system for shRNA-mediated gene-silencing in cancer cells.  相似文献   

18.
Biological applications of dendrimers   总被引:6,自引:0,他引:6  
In the past year, significant advances have been made in the synthesis and study of glycodendrimers and peptide dendrimers. Application of these dendrimers to the study of carbohydrate-protein and protein-protein interactions has facilitated the understanding of these processes. In addition, dendrimers show great promise as DNA- and drug-delivery systems.  相似文献   

19.
A ruthenium coordination complex, incorporating two highly extended pi-systems DIP and two carboxylic groups: [Ru(DIP)2(L-L)]2+ where DIP=4,7-diphenyl-1,10-phenanthroline and L-L=4,4'-dicarboxy-2,2'-bipyridine, is found to be of biological interest. It constitutes an effective nuclear DNA dye for living cells: fluorescent, permeant, biocompatible, high Stokes shift. These features are commented in terms of hydrophobicity and DNA binding. In addition, this complex is shown to internalize a plasmid carrying the enhanced green fluorescent protein (EGFP) gene. Positive results are obtained for gene expression, which is related to condensation of the DNA by this ruthenium agent. This opens up an innovative transfection route based on metal complexes.  相似文献   

20.
Aquated cisplatin was added to half-generation PAMAM dendrimers and the resultant complexes were purified by centrifuge. The drug-dendrimer complexes were then characterised by 1-D and diffusion 1H NMR and ICP-AES. The amount of drug bound was found to increase in proportion with dendrimer size: G3.5, 22 cis-{Pt(NH3)2} molecules per dendrimer; G4.5, 37; G5.5, 54; and G6.5, 94, which represent only a fraction of the available binding sites on each dendrimer (68, 58, 42 and 37%, respectively). Drug release studies showed that some drug remains bound to the dendrimer even after prolonged incubation with 5′—GMP at temperatures of 60 °C for over a week (percentage of drug released 18, 30, 35 and 63%, respectively). Attachment of the drug was found to decrease the radius of the dendrimers. Finally, the effect of the dendrimer on drug cytotoxicity was determined using in vitro assays with the A2780, A2780cis and A2780cp ovarian cancer cell lines. The free dendrimers display no cytotoxicity whilst the drug-dendrimer complexes showed moderate activity. In vivo activity was examined using an A2780 tumour xenograft. Cisplatin, at its maximum tolerated dose of 6 mg/kg, reduced tumour size by 33% compared to an untreated control group. The G6.5 cisplatin-dendrimer complex was administered at two doses (6 and 8 mg/kg equivalent of cisplatin). Both were well tolerated by the mice. The lower dose displayed comparable activity to cisplatin with a tumour volume reduction of 32%, but the higher dose was significantly more active than free cisplatin with a tumour reduction of 45%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号