首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The yeast Saccharomyces cerevisiae is an important industrial platform for the production of grain and cellulosic ethanol, isobutanol, butanediol, isoprenoids, and other chemicals. The construction of a successful production strain usually involves multiple gene knockouts and chromosomal integration of expression cassettes to redirect the metabolic fluxes for the conversion of sugars and other feed stocks into the desired product. RNA-guided Cas9 based genome editing has been demonstrated in many prokaryotic and eukaryotic hosts including S. cerevisiae, in which it has been additionally exploited as a tool for metabolic engineering. To extend the utilization of RNA-guided Cas9 as a metabolic pathway building tool, we demonstrated the direct assembly and chromosomal integration of up to 17 overlapping DNA fragments encoding the beta-carotene biosynthetic pathway. Furthermore, we generated a combinatorial strain library for the beta-carotene biosynthetic pathway, directly integrated into the yeast genome to create a diverse library of strains. This enabled the screening of combinatorial libraries in stable chromosomally integrated strains for rapid improvements of product titers. This combinatorial approach for pathway assembly will significantly accelerate the current speed of metabolic engineering for S. cerevisiae as an industrial platform, and increase the number of strains that can be simultaneously evaluated for enzyme screening, expression optimization and protein engineering to achieve the titer, rate and yield necessary for the commercialization of new industrial fermentation products.  相似文献   

3.
Komagataella phaffii (syn. Pichia pastoris) is one of the most commonly used host systems for recombinant protein expression. Achieving targeted genetic modifications had been hindered by low frequencies of homologous recombination (HR). Recently, a CRISPR/Cas9 genome editing system has been implemented for P. pastoris enabling gene knockouts based on indels (insertion, deletions) via non‐homologous end joining (NHEJ) at near 100% efficiency. However, specifically integrating homologous donor cassettes via HR for replacement studies had proven difficult resulting at most in ~20% correct integration using CRISPR/Cas9. Here, we demonstrate the CRISPR/Cas9 mediated integration of markerless donor cassettes at efficiencies approaching 100% using a ku70 deletion strain. The Ku70p is involved in NHEJ repair and lack of the protein appears to favor repair via HR near exclusively. While the absolute number of transformants in the Δku70 strain is reduced, virtually all surviving transformants showed correct integration. In the wildtype strain, markerless donor cassette integration was also improved up to 25‐fold by placing an autonomously replicating sequence (ARS) on the donor cassette. Alternative strategies for improving donor cassette integration using a Cas9 nickase variant or reducing off targeting associated toxicity using a high fidelity Cas9 variant were so far not successful in our hands in P. pastoris. Furthermore we provide Cas9/gRNA expression plasmids with a Geneticin resistance marker which proved to be versatile tools for marker recycling. The reported CRSIPR‐Cas9 tools can be applied for modifying existing production strains and also pave the way for markerless whole genome modification studies in P. pastoris.  相似文献   

4.
The range of genome‐editing tools has recently been expanded. In particular, an RNA‐guided genome‐editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)‐associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV‐1 was designed and used to generate gRNA‐expressing lentiviral vectors. An HIV‐1‐specific gRNA and Cas9 were stably dually transduced into a highly HIV‐1‐susceptible human T‐cell line and the inhibitory ability of the anti‐HIV‐1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV‐1 infection was observed, as evaluated by a VSV‐G‐pseudotyped HIV‐1 reporter system, the anti‐HIV‐1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti‐HIV‐1 treatment with the CRISPR/Cas9 system alone.  相似文献   

5.
Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired‐sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired‐sgRNA cloning, our strategy only requires the synthesis of two gRNA‐containing primers which largely reduces the cost. We further compared efficiencies of paired‐sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA‐sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10‐fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired‐sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418‐resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants.  相似文献   

6.
The ability to address the CRISPR‐Cas9 nuclease complex to any target DNA using customizable single‐guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single‐guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2‐fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end‐joining (alt‐EJ)‐driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology‐driven repair (HDR) at the target locus but also that Cas9‐induced double‐strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR‐mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR‐induced HDR is only partially mediated by the classical homologous recombination pathway.  相似文献   

7.
The oxygenic photosynthetic bacterium Synechocystis sp. PCC 6803 (S6803) is a model cyanobacterium widely used for fundamental research and biotechnology applications. Due to its polyploidy, existing methods for genome engineering of S6803 require multiple rounds of selection to modify all genome copies, which is time‐consuming and inefficient. In this study, we engineered the Cas9 tool for one‐step, segregation‐free genome engineering. We further used our Cas9 tool to delete three of seven S6803 native plasmids. Our results show that all three small‐size native plasmids, but not the large‐size native plasmids, can be deleted with this tool. To further facilitate heterologous gene expression in S6803, a shuttle vector based on the native plasmid pCC5.2 was created. The shuttle vector can be introduced into Cas9‐containing S6803 in one step without requiring segregation and can be stably maintained without antibiotic pressure for at least 30 days. Moreover, genes encoded on the shuttle vector remain functional after 30 days of continuous cultivation without selective pressure. Thus, this study provides a set of new tools for rapid modification of the S6803 genome and for stable expression of heterologous genes, potentially facilitating both fundamental research and biotechnology applications using S6803.  相似文献   

8.
The CRISPR/Cas12a editing system opens new possibilities for plant genome engineering. To obtain a comparative assessment of RNA‐guided endonuclease (RGEN) types in plants, we adapted the CRISPR/Cas12a system to the GoldenBraid (GB) modular cloning platform and compared the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described GB‐assembled Streptococcus pyogenes Cas9 (SpCas9) constructs in eight Nicotiana benthamiana loci using transient expression. All three nucleases showed drastic target‐dependent differences in efficiency, with LbCas12 producing higher mutagenesis rates in five of the eight loci assayed, as estimated with the T7E1 endonuclease assay. Attempts to engineer crRNA direct repeat (DR) had little effect improving on‐target efficiency for AsCas12a and resulted deleterious in the case of LbCas12a. To complete the assessment of Cas12a activity, we carried out genome editing experiments in three different model plants, namely N. benthamiana, Solanum lycopersicum and Arabidopsis thaliana. For the latter, we also resequenced Cas12a‐free segregating T2 lines to assess possible off‐target effects. Our results showed that the mutagenesis footprint of Cas12a is enriched in deletions of ?10 to ?2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off‐target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to SpCas9 for plant genome engineering.  相似文献   

9.
The RNA‐guided Cas9 system is a versatile tool for genome editing. Here, we established a RNA‐guided endonuclease (RGEN) system as an in vivo desired‐target mutator (DTM) in maize to reduce the linkage drag during breeding procedure, using the LIGULELESS1 (LG1) locus as a proof‐of‐concept. Our system showed 51.5%–91.2% mutation frequency in T0 transgenic plants. We then crossed the T1 plants stably expressing DTM with six diverse recipient maize lines and found that 11.79%–28.71% of the plants tested were mutants induced by the DTM effect. Analysis of successive F2 plants indicated that the mutations induced by the DTM effect were largely heritable. Moreover, DTM‐generated hybrids had significantly smaller leaf angles that were reduced more than 50% when compared with that of the wild type. Planting experiments showed that DTM‐generated maize plants can be grown with significantly higher density and hence greater yield potential. Our work demonstrate that stably expressed RGEN could be implemented as an in vivoDTM to rapidly generate and spread desired mutations in maize through hybridization and subsequent backcrossing, and hence bypassing the linkage drag effect in convention introgression methodology. This proof‐of‐concept experiment can be a potentially much more efficient breeding strategy in crops employing the RNA‐guided Cas9 genome editing.  相似文献   

10.
The clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has been widely used for gene knock-out. Lentiviral vectors have been commonly used as a delivery method for this system, however, prolonged Cas9/sgRNA expression due to lentiviral integration can lead to accumulating off-target mutations. To solve this issue in engineering a gene knock-out cell line, this study established a novel system, which was composed of two lentiviral vectors. One lentiviral vector carried simultaneously sgRNAs and CRISPR/Cas9 expression cassettes targeting single or multiple gene(s); the other lentiviral vector carried Cre that could remove excess sgRNAs and Cas9 expression cassettes in the genome after gene targeting was achieved. To prove the principle, two candidate genes, extracellular matrix protein 1 (ECM1) and progranulin (PGRN), both highly expressed in MDA-MB-231 cells, were selected for testing the novel system. A dual knock-out of ECM1 and PGRN was successfully achieved in MDA-MB-231 cell line, with the sgRNAs and Cas9 expression cassettes being removed by Cre. This system should have great potential in applications for multiple genes knock-out in vitro.  相似文献   

11.
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium‐mediated transformation to 5–6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9‐mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9‐mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.  相似文献   

12.
CRISPR/Cas9 technology has revolutionized biology. This prokaryotic defense system against foreign DNA has been repurposed for genome editing in a broad range of cell tissues and organisms. Trypanosomatids are flagellated protozoa belonging to the order Kinetoplastida. Some of its most representative members cause important human diseases affecting millions of people worldwide, such as Chagas disease, sleeping sickness and different forms of leishmaniases. Trypanosomatid infections represent an enormous burden for public health and there are no effective treatments for most of the diseases they cause. Since the emergence of the CRISPR/Cas9 technology, the genetic manipulation of these parasites has notably improved. As a consequence, genome editing is now playing a key role in the functional study of proteins, in the characterization of metabolic pathways, in the validation of alternative targets for antiparasitic interventions, and in the study of parasite biology and pathogenesis. In this work we review the different strategies that have been used to adapt the CRISPR/Cas9 system to Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., as well as the research progress achieved using these approaches. Thereby, we will present the state‐of‐the‐art molecular tools available for genome editing in trypanosomatids to finally point out the future perspectives in the field.  相似文献   

13.
The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence‐specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T‐DNA, biolistics or by stably integrating nuclease‐encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10‐fold enhancements in GT frequencies have been achieved using DNA virus‐based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon‐based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110‐fold increase in expression of a reporter gene relative to non‐replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12‐fold greater than non‐viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene‐targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV‐based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome.  相似文献   

14.
The CRISPR/Cas9 system has been extensively applied for crop improvement. However, our understanding of Cas9 specificity is very limited in Cas9‐edited plants. To identify on‐ and off‐target mutation in an edited crop, we described whole genome sequencing (WGS) of 14 Cas9‐edited cotton plants targeted to three genes, and three negative (Ne) control and three wild‐type (WT) plants. In total, 4188–6404 unique single‐nucleotide polymorphisms (SNPs) and 312–745 insertions/deletions (indels) were detected in 14 Cas9‐edited plants compared to WT, negative and cotton reference genome sequences. Since the majority of these variations lack a protospacer‐adjacent motif (PAM), we demonstrated that the most variations following Cas9‐edited are due either to somaclonal variation or/and pre‐existing/inherent variation from maternal plants, but not off‐target effects. Of a total of 4413 potential off‐target sites (allowing ≤5 mismatches within the 20‐bp sgRNA and 3‐bp PAM sequences), the WGS data revealed that only four are bona fide off‐target indel mutations, validated by Sanger sequencing. Moreover, inherent genetic variation of WT can generate novel off‐target sites and destroy PAMs, which suggested great care should be taken to design sgRNA for the minimizing of off‐target effect. These findings suggested that CRISPR/Cas9 system is highly specific for cotton plants.  相似文献   

15.
Solventogenic clostridia are important industrial microorganisms that produce various chemicals and fuels. Effective genetic tools would facilitate physiological studies aimed both at improving our understanding of metabolism and optimizing solvent productivity through metabolic engineering. Here we have developed an all‐in‐one, CRISPR‐based genome editing plasmid, pNICKclos, that can be used to achieve successive rounds of gene editing in Clostridium acetobutylicum ATCC 824 and Clostridium beijerinckii NCIMB 8052 with efficiencies varying from 6.7% to 100% and 18.8% to 100%, respectively. The plasmid specifies the requisite target‐specific guide RNA, the gene encoding the Streptococcus pyogenes Cas9 nickase and the genome editing template encompassing the gene‐specific homology arms. It can be used to create single target mutants within three days, with a further two days required for the curing of the pNICKclos plasmid ready for a second round of mutagenesis. A S. pyogenes dCas9‐mediated gene regulation control system, pdCASclos, was also developed and used in a CRISPRi strategy to successfully repress the expression of spo0A in C. acetobutylicum and C. beijerinckii. The combined application of the established high efficiency CRISPR‐Cas9 based genome editing and regulation control systems will greatly accelerate future progress in the understanding and manipulation of metabolism in solventogenic clostridia.  相似文献   

16.
In the genome‐engineering era, it is increasingly important that researchers have access to a common set of platform strains that can serve as debugged production chassis and the basis for applying new metabolic engineering strategies for modeling and characterizing flux, engineering complex traits, and optimizing overall performance. Here, we describe such a platform strain of E. coli engineered for ethanol production. Starting with a fully characterized host strain (BW25113), we site‐specifically integrated the genes required for homoethanol production under the control of a strong inducible promoter into the genome and deleted the genes encoding four enzymes from competing pathways. This strain is capable of producing >30 g/L of ethanol in minimal media with <2 g/L produced of any fermentative byproduct. Using this platform strain, we tested previously identified ethanol tolerance genes and found that while tolerance was improved under certain conditions, any effect on ethanol production or tolerance was lost when grown under production conditions. Thus, our findings reinforce the need for a metabolic engineering “commons” that could provide a set of platform strains for use in more sophisticated genome‐engineering strategies. Towards this end, we have made this production strain available to the scientific community. Biotechnol. Bioeng. 2013; 110: 1520–1526. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM.  相似文献   

18.
The metabolic pathways of the central carbon metabolism in Saccharomyces cerevisiae are well studied and consequently S. cerevisiae has been widely evaluated as a cell factory for many industrial biological products. In this study, we investigated the effect of engineering the supply of precursor, acetyl‐CoA, and cofactor, NADPH, on the biosynthesis of the bacterial biopolymer polyhydroxybutyrate (PHB), in S. cerevisiae. Supply of acetyl‐CoA was engineered by over‐expression of genes from the ethanol degradation pathway or by heterologous expression of the phophoketolase pathway from Aspergillus nidulans. Both strategies improved the production of PHB. Integration of gapN encoding NADP+‐dependent glyceraldehyde‐3‐phosphate dehydrogenase from Streptococcus mutans into the genome enabled an increased supply of NADPH resulting in a decrease in glycerol production and increased production of PHB. The strategy that resulted in the highest PHB production after 100 h was with a strain harboring the phosphoketolase pathway to supply acetyl‐CoA without the need of increased NADPH production by gapN integration. The results from this study imply that during the exponential growth on glucose, the biosynthesis of PHB in S. cerevisiae is likely to be limited by the supply of NADPH whereas supply of acetyl‐CoA as precursor plays a more important role in the improvement of PHB production during growth on ethanol. Biotechnol. Bioeng. 2013; 110: 2216–2224. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Ketogulonicigenium vulgare WSH‐001 is an industrial strain used for vitamin C production. Based on genome sequencing and pathway analysis of the bacterium, some of its potential pyrroloquinoline quinone (PQQ)‐dependent dehydrogenases were predicted, including KVU_pmdA_0245, KVU_2142, KVU_2159, KVU_1366, KVU_0203, KVU_0095, and KVU_pmdB_0115. BLAST and function domain searches showed that enzymes encoded by these genes may act as putative PQQ‐dependent L ‐sorbose dehydrogenases (SDH) or L ‐sorbosone dehydrogenases (SNDH). To validate whether these dehydrogenases are PQQ‐dependent or not, these seven putative dehyrogenases were overexpressed in Escherichia coli BL21 (DE3) and purified for characterization. Biochemical and kinetic characterization of the purified proteins have led to the identification of seven enzymes that possess the ability to oxidize L ‐sorbose or L ‐sorbosone to varying degrees. In addition, the dehydrogenation of sorbose in K. vulgare is validated to be PQQ dependent, identification of these PQQ‐dependent dehydrogenases expanded the PQQ‐dependent dehydrogenase family. Besides, the optimal combination of enzymes that could more efficiently catalyze the conversion of sorbose to gulonic acid was proposed. These are important in supporting the development of metabolic engineering strategies and engineering of efficient strains for one‐step production of vitamin C in the future. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1398–1404, 2013  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号