首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, it had been shown that Euglena gracilis was able to grow heterotrophically not only on synthetic media, but also on media based on potato liquor. Supplementation with glucose in both cases led to the accumulation of paramylon, a β‐1,3‐glucan. Thus, such a process may yield a valuable product accompanied by the revaluation of an otherwise annoying waste stream of the potato‐starch industry. Actually, process strategies have been evaluated in order to optimise the concentration of paramylon obtained at the end of the cultivation process. Therefore, cultivation processes based on fed‐batch and in particular repeated‐batch strategies have been studied. It is shown that repeated‐batch operation maybe particularly suited for such a process since E. gracilis seems to adapt gradually to the cultivation medium so that the concentration of media components may be increased step by step. Repeated‐batch cultivation of E. gracilis leads to biomass concentrations in access of 20 g/L with a consistent paramylon mass fraction of about 75%. Cultivations have been carried out at an operating temperature of 27.5°C. As had been found earlier already, pH control is not required during cultivation. On the basis of these results it is clear that repeated‐batch cultivation represent a simple and economic way for the production of paramylon by heterotrophic cultivation of E. gracilis.  相似文献   

2.
Chitosan is a major structural component of fungal cell walls and has diverse medical and other applications. However, cost‐effective culture and extraction methods for fungi need to be developed. Therefore, Mucor rouxii was grown on YPG‐media in both submerged batch and semi‐continuous cultures. Chitosan was extracted from the mycelia to explore strategies to enhance yields and production rates. As observed in earlier studies, M. rouxii is able to adapt to shear stress when cultured semi‐continuously. Modeling the hyphal growth of batch experiments shows that the mycelia were ruptured by shear forces within a short cultivation time shown by a decreased hyphal length. However, an increasing chitosan content was observed with an increasing cultivation period in semi‐continuous cultures, which is an indication for the adaption to shear stress. Semi‐continuous culture resulted in the highest contents of extractable chitosan. The results and models of hyphal growth, including tip extension and branching, suggest that repeated batch cultures may be optimal for chitosan production.  相似文献   

3.
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m?1 s?1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L?1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
5.
6.
The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon‐to‐nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L?1 glucose, 2.5 g L?1 KNO3) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500‐mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L?1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g?1 and 305 mg L?1 day?1, respectively. A repeated fed‐batch culture with four cycles of feeding with the fivefold concentrated medium in a 3‐L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L?1 was obtained with a TFA productivity of 223 mg L?1 day?1. The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589–1600, 2017  相似文献   

7.
A model‐based approach for optimization and cascade control of dissolved oxygen partial pressure (pO2) and maximization of biomass in fed‐batch cultivations is presented. The procedure is based on the off‐line model‐based optimization of the optimal feeding rate profiles and the subsequent automatic pO2 control using a proposed cascade control technique. During the model‐based optimization of the process, feeding rate profiles are optimized with respect to the imposed technological constraints (initial and maximal cultivation volume, cultivation time, feeding rate range, maximal oxygen transfer rate and pO2 level). The cascade pO2 control is implemented using activation of cascades for agitation, oxygen enrichment, and correction of the preoptimized feeding rate profiles. The proposed approach is investigated in two typical fed‐batch processes with Escherichia coli and Saccharomyces cerevisiae. The obtained results show that it was possible to achieve sufficiently high biomass levels with respect to the given technological constraints and to improve controllability of the investigated processes.  相似文献   

8.
Temperature‐tolerant Chlorella sorokiniana was cultivated in a 51‐L column photobioreactor with a 1.1 m2 illuminated area. The reactor was operated outdoors under tropical meteorological conditions (Singapore) without controlling temperature and the culture was mixed at a power input of 7.5 W/m3 by sparging CO2‐enriched air at 1.2 L/min (gas hold‐up of 0.02). Biomass productivity averaged 10 ± 2.2 g/${\rm m}_{{\rm illuminated}\,{\rm area}}^{{\rm 2}} {\rm \hbox{-} day}$ over six batch studies, yielding an average photosynthetic efficiency (PE) of 4.8 ± 0.5% of the total solar radiation (P = 0.05, N = 6). This demonstrates that temperature‐tolerant microalgae can be cultivated at high PE under a mixing input sevenfold to ninefold lower than current operational guidelines (50–70 W/m3) and without the need for temperature control (the culture broth temperature reached 41°C during operation). In this study, the PE value was determined based on the amount of solar radiation actually reaching the algae and this amount was estimated using a mathematical model fed with onsite solar irradiance data. This determination was found to be particularly sensitive to the value of the atmospheric diffusion coefficient, which generated a significant uncertainty in the PE calculation. The use of the mathematical model, however, confirmed that the vertical reactor geometry supported efficient photosynthesis by reducing the duration and intensity of photoinhibition events. The model also revealed that all three components of direct, diffuse, and reflected solar radiation were quantitatively important for the vertical column photobioreactor, accounting for 14%, 65%, and 21% of the total solar radiation reaching the culture, respectively. The accurate prediction of the discrete components of solar radiation reaching the algae as a function of climatic, geographic, and design parameters is therefore crucial to optimize the individual reactor geometry and the layout/spacing between the individual reactors in a reactor farm. Biotechnol. Bioeng. 2013; 110: 118–126. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
The evolution of vaccine product quality during batch cultivation of Bordetella pertussis, the causative agent of whooping cough, was investigated with the goal to determine the optimal harvest point. The process was explored by measuring mRNA expression at frequent intervals during cultivation. The genes that are involved in virulence are already known for this product and changes in their expression levels are proposed to be indicative for product quality. A quantitative product quality score is calculated based on the expression levels of these virulence genes, which allows comparison of expected product quality between culture samples. Product quality scores were maximal throughout the logarithmic growth phase, but dropped significantly at the start of the stationary phase. This showed that the decreasing lactate and glutamate concentrations towards the end of the batch are critical for product quality. On‐line measurement of these nutrients allows the cultivation process to be harvested at the optimal harvest point, increasing process robustness and consistency. Biotechnol. Bioeng. 2009;103: 900–908. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Co‐cultures for simultaneous production of ethanol and xylitol were studied under different operation bioreactor modes using Candida tropicalis IEC5‐ITV and Saccharomyces cerevisiae ITV01‐RD in a simulated medium of sugarcane bagasse hydrolyzates. Xylitol and ethanol tolerance by S. cerevisiae and C. tropicalis, respectively, was evaluated. The results showed that C. tropicalis was sensitive to ethanol concentrations up to 30 g/L, while xylitol had no effect on S. cerevisiae viability and metabolism. The best condition found for simultaneous culture was S. cerevisiae co‐culture and C. tropicalis sequential cultivation at 24 h. Under these conditions, productivity and yield for ethanol were QEtOH = 0.72 g L?1 h?1 and YEtOH/s = 0.37 g/g, and for xylitol, QXylOH = 0.10 g L?1 h?1 and YXylOH/S = 0.31 g/g, respectively; using fed‐batch culture, the results were QEtOH = 0.87 g L?1 h?1 and YEtOH/s = 0.44 g L?1 h?1, and QEtOH = 0.27 g L?1 h?1 and YEtOH/s = 0.57 g/g, respectively. Maximum volumetric productivity in continuous multistep cultures of ethanol and xylitol was at dilution rates of 0.131 and 0.074 h?1, respectively. Continuous multistep production, QEtOH increased up to 50% more than in fed‐batch culture, even though xylitol yield remained unchanged.  相似文献   

12.
Poly(γ‐glutamic acid) (γ‐PGA) is a promising biopolymer with many potential industrial and pharmaceutical applications. To reduce the production costs, the effects of yeast extract and L ‐glutamate in the substrate for γ‐PGA production were investigated systematically at shake flask scale. The results showed that lower concentrations of yeast extract (40 g/L) and L ‐glutamate (30 g/L) were beneficial for the cost‐effective production of γ‐PGA in the formulated medium. By maintaining the glucose concentration in the range of 3–10 g/L via a fed‐batch strategy in a 10‐L fermentor, the production of γ‐PGA was greatly improved with the highest γ‐PGA concentration of 101.1 g/L, a productivity of 2.19 g/L·h and a yield of 0.57 g/g total substrate, which is about 1.4‐ to 3.2‐fold higher than those in the batch fermentation. Finally, this high‐density fermentation process was successfully scaled up in a 100‐L fermentor. The present work provides a powerful approach to produce this biopolymer as a bulk chemical in large scale.  相似文献   

13.
The potential of facultative photosynthetic bacteria as producers of photosynthetic pigments, vitamins, coenzymes and other valuable products has been recognized for decades. However, mass cultivation under photosynthetic conditions is generally inefficient due to the inevitable limitation of light supply when cell densities become very high. The previous development of a new cultivation process for maximal expression of photosynthetic genes under semi‐aerobic dark conditions in common bioreactors offers a new perspective for utilizing the facultative photosynthetic bacterium Rhodospirillum rubrum for large‐scale applications. Based on this cultivation system, the present study aimed in determining the maximal achievable cell density of R. rubrum in a bioreactor, thereby providing a major milestone on the way to industrial bioprocesses. As a starting point, we focus on aerobic growth due to higher growth rates and more facile process control under this condition, with the option to extend the process by an anaerobic production phase. Process design and optimization were supported by an unstructured computational process model, based on mixed‐substrate kinetics. Key parameters for growth and process control were determined in shake‐flask experiments or estimated by simulation studies. For fed‐batch cultivation, a computer‐controlled exponential feed algorithm in combination with a pH‐stat element was implemented. As a result, a maximal cell density of 59 g cell dry weight (CDW) L?1 was obtained, representing so far not attainable cell densities for photosynthetic bacteria. The applied exponential fed‐batch methodology therefore enters a range which is commonly employed for industrial applications with microbial cells. The biochemical analysis of high cell density cultures revealed metabolic imbalances, such as the accumulation and excretion of tetrapyrrole intermediates of the bacteriochlorophyll biosynthetic pathway. Biotechnol. Bioeng. 2010. 105: 729–739. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
β‐poly(l ‐malic acid) (PMLA) is a biopolyester, which has attracted growing attention due to its potential applications in medicine and other industries. In this study, the biosynthetic pathway of PMLA and the fermentation strategies with mixed sugars were both investigated to enhance PMLA production by Aureobasidium pullulans ipe‐1. Metabolic intermediates and inhibitors were used to study the biosynthetic pathway of PMLA. It showed that exogenous addition of l ‐malic acid, succinic acid, TFA, and avidin had negligible effect on PMLA production, while pyruvic acid and biotin were the inhibitors, indicating that PMLA biosynthesis was probably related to phosphoenolpyruvate via oxaloacetate catalyzed by phosphoenolpyruvate carboxylase. Sucrose was suitable for achieving the highest PMLA concentration, while fructose generated a higher yield of PMLA (PMLA produced per biomass). Furthermore, the fed‐batch culture using fed solution with different sugar mixture for PMLA production was implemented. During the fed‐batch culture with mixed solution, fructose could increase PMLA production. Compared with the batch culture, the feeding with mixed sugar (sucrose and glucose) increased PMLA concentration by 23.9%, up to 63.2 g/L, and the final volume of the broth was increased by 25%. These results provide a good reference for process development and optimization of PMLA production.  相似文献   

15.
Streptavidin is a homotetrameric protein binding the vitamin biotin and peptide analogues with an extremely high affinity, which leads to a large variety of applications. The biotin‐auxotrophic yeast Pichia pastoris has recently been identified as a suitable host for the expression of the streptavidin gene, allowing both high product concentrations and productivities. However, so far only methanol‐based expression systems have been applied, bringing about increased oxygen demand, strong heat evolution and high requirements for process safety, causing increased cost. Moreover, common methanol‐based processes lead to large proportions of biotin‐blocked binding sites of streptavidin due to biotin‐supplemented media. Targeting these problems, this paper provides strategies for the methanol‐free production of highly bioactive core streptavidin by P. pastoris under control of the constitutive GAP promoter. Complex were superior to synthetic production media regarding the proportion of biotin‐blocked streptavidin. The optimized, easily scalable fed‐batch process led to a tetrameric product concentration of up to 4.16 ± 0.11 µM of biotin‐free streptavidin and a productivity of 57.8 nM h?1 based on constant glucose feeding and a successive shift of temperature and pH throughout the cultivation, surpassing the concentration in un‐optimized conditions by a factor of 3.4. Parameter estimation indicates that the optimized conditions caused a strongly increased accumulation of product at diminishing specific growth rates (μ ≈ D < 0.01 h?1), supporting the strategy of feeding. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:855–864, 2016  相似文献   

16.
The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF at 48 g dry cell wt l−1 during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as ~64 g dry cell wt l−1, 223 mg hG-CSF g−1 dry cell wt and 775 mg hG-CSF l−1 h−1, respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose. Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show valuable decrease in activity in purified form.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号