首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guanine‐rich DNA sequences that may form G‐quadruplexes are located in strategic DNA loci with the ability to regulate biological events. G‐quadruplexes have been under intensive scrutiny owing to their potential to serve as novel drug targets in emerging anticancer strategies. Thermodynamic characterization of G‐quadruplexes is an important and necessary step in developing predictive algorithms for evaluating the conformational preferences of G‐rich sequences in the presence or the absence of their complementary C‐rich strands. We use a combination of spectroscopic, calorimetric, and volumetric techniques to characterize the folding/unfolding transitions of the 26‐meric human telomeric sequence d[A3G3(T2AG3)3A2]. In the presence of K+ ions, the latter adopts the hybrid‐1 G‐quadruplex conformation, a tightly packed structure with an unusually small number of solvent‐exposed atomic groups. The K+‐induced folding of the G‐quadruplex at room temperature is a slow process that involves significant accumulation of an intermediate at the early stages of the transition. The G‐quadruplex state of the oligomeric sequence is characterized by a larger volume and compressibility and a smaller expansibility than the coil state. These results are in qualitative agreement with each other all suggesting significant dehydration to accompany the G‐quadruplex formation. Based on our volume data, 432 ± 19 water molecules become released to the bulk upon the G‐quadruplex formation. This large number is consistent with a picture in which DNA dehydration is not limited to water molecules in direct contact with the regions that become buried but involves a general decrease in solute–solvent interactions all over the surface of the folded structure. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 216–227, 2014.  相似文献   

2.
G‐rich sequences can adopt four‐stranded helical structures, called G‐quadruplexes, that self‐assemble around monovalent cations like sodium (Na+) and potassium (K+). Whether similar structures can be formed from xeno‐nucleic acid (XNA) polymers with a shorter backbone repeat unit is an unanswered question with significant implications on the fold space of functional XNA polymers. Here, we examine the potential for TNA (α‐l ‐threofuranosyl nucleic acid) to adopt a four‐stranded helical structure based on a planar G‐quartet motif. Using native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) and solution‐state nuclear magnetic resonance (NMR) spectroscopy, we show that despite a backbone repeat unit that is one atom shorter than the backbone repeat unit found in DNA and RNA, TNA can self‐assemble into stable G‐quadruplex structures that are similar in thermal stability to equivalent DNA structures. However, unlike DNA, TNA does not appear to discriminate between Na+ and K+ ions, as G‐quadruplex structures form equally well in the presence of either ion. Together, these findings demonstrate that despite a shorter backbone repeat unit, TNA is capable of self‐assembling into stable G‐quadruplex structures.  相似文献   

3.
RNA G-quadruplexes, as their well-studied DNA analogs, require the presence of cations to fold and remain stable. This is the first comprehensive study on the interaction of RNA quadruplexes with metal ions. We investigated the formation and stability of two highly conserved and biologically relevant RNA quadruplex-forming sequences (24nt-TERRA and 18nt-NRAS) in the presence of several monovalent and divalent metal ions, namely Li+, Na+, K+, Rb+, Cs+, NH4 +, Mg2+, Ca2+, Sr2+, and Ba2+. Circular dichroism was used to probe the influence of these metal ions on the folded fraction of the parallel G-quadruplexes, and UV thermal melting experiments allowed to assess the relative stability of the structures in each cationic condition. Our results show that the RNA quadruplexes are more stable than their DNA counterparts under the same buffer conditions. We have observed that the addition of mainly Na+, K+, Rb+, NH4 +, as well as Sr2+ and Ba2+ in water, shifts the equilibrium to the folded quadruplex form, whereby the NRAS sequence responds stronger than TERRA. However, only K+ and Sr2+ lead to a significant increase in the stability of the folded structures, which is consistent with their coordination to the O6 atoms from the G-quartet guanosines. Compared to the respective DNA motives, dNRAS and htelo, the RNA sequences are not stabilized by Na+ ions. Finally, the difference in response between NRAS and TERRA, as well as to the corresponding DNA sequences with respect to different metal ions, could potentially be exploited for selective targeting purposes.  相似文献   

4.
Risitano A  Fox KR 《Biochemistry》2003,42(21):6507-6513
We have determined the stability of intramolecular quadruplexes that are formed by a variety of G-rich sequences, using oligonucleotides containing appropriately placed fluorophores and quenchers. The stability of these quadruplexes is compared with that of the DNA duplexes that are formed on addition of complementary C-rich oligonucleotides. We find that the linkers joining the G-tracts are not essential for folding and can be replaced with nonnucleosidic moieties, though their sequence composition profoundly affects quadruplex stability. Although the human telomere repeat sequence d[G(3)(TTAG(3))(3)] folds into a quadruplex structure, this forms a duplex in the presence of the complementary C-rich strand at physiological conditions. The Tetrahymena sequence d[G(4)(T(2)G(4))(3)], the sequence d[G(3)(T(2)G(3))(3)], and sequences related to regions of the c-myc promoter d(G(4)AG(4)T)(2) and d(G(4)AG(3)T)(2) preferentially adopt the quadruplex form in potassium-containing buffers, even in the presence of a 50-fold excess of their complementary C-rich strands, though the duplex predominates in the presence of sodium. The HIV integrase inhibitor d[G(3)(TG(3))(3)] forms an extremely stable quadruplex which is not affected by addition of a 50-fold excess of the complementary C-rich strand in both potassium- and sodium-containing buffers. Replacing the TTA loops of the human telomeric repeat with AAA causes a large decrease in quadruplex stability, though a sequence with AAA in the first loop and TTT in the second and third loops is slightly more stable.  相似文献   

5.
G‐quadruplexes are characteristic structural arrangements of guanine‐rich DNA sequences that abound in regions with relevant biological significance. These structures are highly polymorphic differing in the number and polarity of the strands, loop composition, and conformation. Furthermore, the cation species present in solution strongly influence the topology of the G‐quadruplexes. Recently, we reported the synthesis and structural studies of new G‐quadruplex forming oligodeoxynucleotides (ODNs) in which the 3′‐ and/or the 5′‐ends of four ODN strands are linked together by a non‐nucleotidic tetra‐end‐linker (TEL). These TEL‐ODN analogs having the sequence TGGGGT are able to form parallel G‐quadruplexes characterized by a remarkable high thermal stability. We report here an investigation about the influence of the reduction of the TEL size on the molecularity, topology, and stability of the resulting TEL‐G‐quadruplexes using a combination of circular dichroism (CD), CD melting, 1H NMR spectroscopy, gel electrophoresis, and molecular modeling data. We found that all TEL‐(TGGGGT)4 analogs, regardless the TEL size and the structural orientation of the ODN branches, formed parallel TEL‐G‐quadruplexes. The molecular modeling studies appear to be consistent with the experimental CD and NMR data revealing that the G‐quadruplexes formed by TEL‐ODNs having the longer TEL (L 1 ‐ 4 ) are more stable than the corresponding G‐quadruplexes having the shorter TEL (S 1 ‐ 4 ). The relative stability of S 1 ‐ 4 was also reported. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 466–477, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
For mimicking macromolecular crowding of DNA quadruplexes, various crowding agents have been used, typically PEG, with quadruplexes of micromolar strand concentrations. Thermal and thermodynamic stabilities of these quadruplexes increased with the concentration of the agents, the rise depended on the crowder used. A different phenomenon was observed, and is presented in this article, when the crowder was the quadruplex itself. With DNA strand concentrations ranging from 3 µM to 9 mM, the thermostability did not change up to ~2 mM, above which it increased, indicating that the unfolding quadruplex units were not monomolecular above ~2 mM. The results are explained by self‐association of the G‐quadruplexes above this concentration. The ΔGo37 values, evaluated only below 2 mM, did not become more negative, as with the non‐DNA crowders, instead, slightly increased. Folding topology changed from antiparallel to hybrid above 2 mM, and then to parallel quadruplexes at high, 6–9 mM strand concentrations. In this range, the concentration of the DNA phosphate anions approached the concentration of the K+ counterions used. Volume exclusion is assumed to promote the topological changes of quadruplexes toward the parallel, and the decreased screening of anions could affect their stability. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 428–438, 2014.  相似文献   

7.
8.
The bcl2 promoter region forms a G‐quadruplex structure, which is a crucial target for anticancer drug development. In this study, we provide theoretical predictions of the stability of different G‐quadruplex folds of the 23‐mer bcl2 promoter region and G‐quadruplex ligand. We take into account the whole G‐quadruplex structure, including bound‐cations and solvent effects, in order to compute the ligand binding free energy using molecular dynamics simulation. Two series of the carbazole and diphenylamine derivatives are used to screen for the most potent drug in terms of stabilization. The energy analysis identifies the predominant energy components affecting the stability of the various different G‐quadruplex folds. The energy associated with the stability of the G‐quadruplex‐K+ structures obtained displays good correlation with experimental Tm measurements. We found that loop orientation has an intrinsic influence on G‐quadruplex stability and that the basket structure is the most stable. Furthermore, parallel loops are the most effective drug binding site. Our studies also demonstrate that rigidity and planarity are the key structural elements of a drug that stabilizes the G‐quadruplex structure. BMVC‐4 is the most potential G‐quadruplex ligand. This approach demonstrates significant promise and should benefit drug design. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1038–1050, 2014.  相似文献   

9.
Unfolding of DNA quadruplexes induced by HIV-1 nucleocapsid protein   总被引:4,自引:1,他引:3  
The human immunodeficiency virus type 1 nucleocapsid protein (NC) is a nucleic acid chaperone that catalyzes the rearrangement of nucleic acids into their thermodynamically most stable structures. In the present study, a combination of optical and thermodynamic techniques were used to characterize the influence of NC on the secondary structure, thermal stability and energetics of monomolecular DNA quadruplexes formed by the sequence d(GGTTGGTGTGGTTGG) in the presence of K+ or Sr2+. Circular dichroism studies demonstrate that NC effectively unfolds the quadruplexes. Studies carried out with NC variants suggest that destabilization is mediated by the zinc fingers of NC. Calorimetric studies reveal that NC destabilization is enthalpic in origin, probably owing to unstacking of the G-quartets upon protein binding. In contrast, parallel studies performed on a related DNA duplex reveal that under conditions where NC readily destabilizes and unfolds the quadruplexes, its effect on the DNA duplex is much less pronounced. The differences in NC's ability to destabilize quadruplex versus duplex is in accordance with the higher ΔG of melting for the latter, and with the inverse correlation between nucleic acid stability and the destabilizing activity of NC.  相似文献   

10.
The HIV‐1 integrase is an attractive target for the therapeutics development against AIDS, as no host homologue of this protein has been identified. The integrase strand transfer inhibitors (INSTIs), including raltegravir, specifically target the second catalytic step of the integration process by binding to the DDE motif of the catalytic site and coordinating Mg2+ ions. Recent X‐ray crystallographic structures of the integrase/DNA complex from prototype foamy virus allowed to investigate the role of the different partners (integrase, DNA, Mg2+ ions, raltegravir) in the complex stability using molecular dynamics (MD) simulations. The presence of Mg2+ ions is found to be essential for the stability, whereas the simultaneous presence of raltegravir and Mg2+ ions has a destabilizing influence. A homology model of HIV‐1 integrase was built on the basis of the X‐ray crystallographic information, and protein marker residues for the ligand binding were detected by clustering the docking poses of known HIV‐1 integrase inhibitors on the model. Interestingly, we had already identified some of these residues to be involved in HIV‐1 resistance mutations and in the stabilization of the catalytic site during the MD simulations. Classification of protein conformations along MD simulations, as well as of ligand docking poses, was performed by using an original learning method, based on self‐organizing maps. This allows us to perform a more in‐depth investigation of the free‐energy basins populated by the complex in MD simulations on the one hand, and a straightforward classification of ligands according to their binding residues on the other hand. Proteins 2014; 82:466–478. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The solution structure and dynamical properties of the potassium-stabilized, hairpin dimer quadruplex formed by the oligonucleotide d(G3T4G3) have been elucidated by a combination of high-resolution NMR and molecular dynamics simulations. Refinement calculations were carried out both in vacuo, without internally coordinated K+ cations, and in explicit water, with internally coordinated K+ cations. In the latter case, the electrostatic interactions were calculated using the particle mesh Ewald (PME) method. The NMR restraints indicate that the K+ quadruplex has a folding arrangement similar to that formed by the same oligonucleotide in the presence of sodium, but with significant local differences. Unlike the Na+ quadruplex, the thymine loops found in K+ exhibit considerable flexibility, and appear to interconvert between two preferred conformations. Furthermore, the NMR evidence points toward K+-stabilized guanine quartets of slightly larger diameter relative to the Na+-stabilized structure. The characteristics of the quartet stem are greatly affected by the modeling technique employed: caged cations alter the size and symmetry of the quartets, and explicit water molecules form hydration spines within the grooves. These results provide insight into those factors that determine the overall stability of hairpin dimer quadruplexes and the effects of different cations in modulating the relative stability of the dimeric hairpin and linear, four-stranded, quadruplex forms.  相似文献   

12.
Replacement of two to four guanines by adenines in the human telomere DNA repeat dG3(TTAG3)3 did not hinder the formation of quadruplexes if the substitutions took place in the terminal tetrad bridged by the diagonal loop of the intramolecular antiparallel three‐tetrad scaffold, as proved by CD and PAGE in both Na+ and K+ solutions. Thermodynamic data showed that, in Na+ solution, the dG3(TTAG3)3 quadruplex was destabilized, the least by the two G:A:G:A tetrads, the most by the G:G:A:A tetrad in which the adenosines replaced syn‐guanosines. In physiological K+ solution, the highest destabilization was caused by the 4A tetrad. In K+, only the unmodified dG3(TTAG3)3 quadruplex rearranged into a K+‐dependent quadruplex form, none of the multiple adenine‐modified structures did so. This may imply biological consequences for nonrepaired A‐for‐G mutations. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 880–886, 2010.  相似文献   

13.
The insulin‐linked polymorphic region (ILPR) is a VNTR region located upstream of the insulin (INS) gene consisting of the repeat 5′‐ACAGGGGTGTGGGG (repeat a) and several less abundant sequence repeats (b–n). Here, we have investigated the structural polymorphism of G‐quadruplexes formed from the most common repeat sequences (a–c) and their effect on insulin protein binding. We first established that the ILPR repeats “b” and “c” can form quadruplex structures. Insulin has previously been shown to bind a G‐quadruplex formed by a dimer of the repeat “a”. Our findings show that insulin binds preferentially to the repeat “a” G‐quadruplex (Kd = 0.17 ± 0.03 μM) over G‐quadruplexes formed from other ILPR repeats that were tested (Kds from 0.71 ± 0.15 to 1.07 ± 0.09 μM). Additionally, the Watson‐Crick complementary relationship between the loop regions of repeat “a” (ACA and TGT) seemingly play an important role in favoring a specific G‐quadruplex conformation, which based on our data is critical for insulin binding. Affinity for insulin is reduced in sequences lacking the putative WC complementarity, however upon engineered restoration of complementarity, insulin binding is recovered. A DMS footprinting assay on the repeat “a” G‐quadruplex in the presence of insulin, combined with binding affinities for ILPR mutants led to identification of a loop nucleotide critical for binding. Uniquely, insulin shows clear preference for binding to the G‐quadruplexes with the more antiparallel feature. Collectively, our results illustrate the specific nature of insulin binding to the ILPR G‐quadruplexes and begin to provide molecular details on such interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 21–31, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
In the presence of hemin and under appropriate conditions, some modalities of G‐quadruplexes can form a peroxidase‐like DNAzyme that has been widely used in biology. Structure? function studies on the DNAzyme revealed that its catalytic ability may be dependent on the unimolecular parallel G‐quadruplex. In this report, we present the preliminary investigation on the relationship between the structure and function of DNAzymes through a terminal oligo modification in G‐quadruplex sequences by adding different lengths of oligo‐dT to the 3′‐ or 5′‐end of the aptamers. The results suggested that adding dTn to the 5′‐end of the DNA sequence of the enzyme improved the ability of hemin to bind with DNA, but the addition of dTn to the 3′‐end decreased the binding ability of hemin for DNA. The increased stability of the assembled DNAzyme would lead to more favorable binding between the enzyme and substrate (H2O2), facilitating higher peroxidase activity; on the contrary, with lower stability of the DNAzyme complex, we observed reduced peroxidase activity.  相似文献   

15.
We have investigated the nonbonded interaction energies and dynamical properties of different types of cations in quadruplex DNA structures using the GROMOS force field [1]. Quadruplex structures consist of planar guanine-quartets stacking together and causing the formation of a channel, large enought to enclose several cations (Figure 1). In recent years many experimental studies have indicated a prefered formation of this unusually stabel complexes with K+-ions. However, the high selectivity of this cation has not yet been understood [2].To determine the most stable coordination sites and the mobility of cations, we have calculated the pair potential energy of alkali and alkaline-earth cations along the helical axis of a model quadruplex structure (Figure 2). Our force field calculations indicate that small ions like Li+, Na+, Mg2+ and Ca2+ are free to move throught the channel. In contrast, for K+ and larger ions a high potential barrier appears, located in the plane of the tetramer unit. These findings are in agreement with data from X-ray crystallography, indicating that K+ cations are located between two planes while Na+ ions also can occupy coordination sites in the G-quartet plane.Considering solvent atoms in our calculations leads to the observation that a cation at the end of the quadruplex strongly interacts with one water molecule located near the entrance of the cage. Snapshots taken at different times of the MD simulation provide configurations which differ mainly in the position of this complexing water molecule. Moving away from the entrance of the cage causes a significant decrease of the potential barrier for K+ and smaller cage cations (Figure 3). For the larger ions the potential barrier is much higher than the thermal energy (not shown), preventing the cations from leaving and entering the cage.This conclusion is in agreement with results from our MD simulations. We followed the dynamics of different cations. While K+ is able to leave as well as to re-migrate into the channel (movie I), this was not observed for other types of cations. Figure 4 shows the time history of the positional fluctuations of potassium along the helical axis, and in Figure 5 we have monitored the distance between the O6-oxygen atoms of the outer G-quartet. It becomes clearly evident that the cation movement through the planes is correlated with the dynamic behaviour of the tetrameric planes. When the K+-ion penetrates the tetrameric unit to enter the quadruplex, the O6-O6-distance - a measure of size of the hole of the plane - increases. After a while the cation has reached the cage position and the G-quartet contracts to the initial value. That means the tetrameric planes perform a kind of breathing motion.For lithium ions we find a much higher mobility of the cation within the quadruplex channel. Two of three ions are leaving the cage instantaniously (not shown).Another indication of the experimentally observed much weaker complexation tendency of quadruplexes with lithium is the change in the distances of planes (a measure for the cage size) with time. While in the case of potassium the distance of planes is nearly the same for all three cages, for lithium the central occupied cage is much smaller than the cage in the starting structure, indicating that the DNA structure has to adjust its conformation to the cation size. On the other side the outer unoccupied cages are much greater and less stable. Due to this cation induced quadruplex deformation we observe an unwinding of the DNA-structure in the presens of lithium ions at longer simulation periods (400 ps).  相似文献   

16.
17.
Polymerase chain reaction (PCR) is a method of choice for molecular diagnostics. However, PCR relies on thermal cycling, which is not compatible with the goals of point‐of‐care diagnostics. A simple strategy to turn PCR into an isothermal method would be to use specific primers, which upon polymerase elongation can self‐dissociate from the primer‐binding sites. We recently demonstrated that a monomolecular DNA quadruplex, GGGTGGGTGGGTGGG, meets these requirements, which led to the development of the linear versions of quadruplex priming amplification (QPA). Here we demonstrate exponential version of isothermal QPA, which allows an unprecedented 1010‐fold amplification of DNA signal in less than 40 min. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 88–95, 2015.  相似文献   

18.
We studied the effect of antitumor cisplatin and inefficient transplatin on the structure and stability of G quadruplexes formed by the model human telomere sequence 5′-GGG(TTAGGG)3-3′ using circular dichroism, UV-monitored thermal denaturation, and gel electrophoresis. In addition, to investigate whether there is a connection between the ability of cisplatin or transplatin to affect telomerase activity and stability of G quadruplexes, we also used a modified telomere repeat amplification protocol assay that uses an oligonucleotide substrate for telomerase elongation susceptible to forming a G quadruplex. The results indicate that cisplatin is more efficient than transplatin in disturbing the quadruplex structure, thereby precluding telomeric sequences from forming quadruplexes. On the other hand, the results of this work also demonstrate that in absence of free platinum complex, DNA adducts of antitumor cisplatin inhibit telomerase catalysis, so the mechanism underlying this inhibition does not involve formation of the G quadruplexes which are not elongated by telomerase.  相似文献   

19.
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions.  相似文献   

20.
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X (FXa)-binding protein with both anticoagulant and hypotensive activities. The thermodynamics of the binding of alkaline earth metal ions to ACF II and their effects on the stability of ACF II and the binding of ACF II to FXa were investigated by isothermal titration calorimetry, fluorescence, differential scanning calorimetry, and surface plasmon resonance. The binding of ACF II to FXa does not have an absolute requirement for Ca2+. Mg2+, Sr2+, and Ba2+ can induce the binding of ACF II to FXa. The radii of the cations bound in ACF II crucially affect the binding affinity of ACF II for cations and the structural stability of ACF II against guanidine hydrochloride and thermal denaturation, whereas the radii of cations bound in FXa markedly affect the binding affinity between ACF II and FXa. The binding affinities of ACF II for cations and the capacities of metal-induced stabilization of ACF II follow the same trend: Ca2+ > Sr2+ > Ba2+. The metal-induced binding affinities of ACF II for FXa follow the trend Mg2+ > Ca2+ > Sr2+ > Ba2+. Although Mg2+ shows significantly low binding affinity with ACF II, Mg2+ is the most effective to induce the binding of ACF II with FXa. Our observations suggest that in blood the bindings of Ca2+ in two sites of ACF II increase the structural stability of ACF II, but these bindings are not essential for the binding of ACF II with FXa, and that the binding of Mg2+ and Ca2+ to FXa may be essential for the recognition between FXa and ACF II. Like Ca2+, the abundant Mg2+ in blood also plays an important role in the anticoagulation of ACF II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号