首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Protein loops make up a large portion of the secondary structure in nature. But very little is known concerning loop closure dynamics and the effects of loop composition on fold stability. We have designed a small system with stable β‐sheet structures, including features that allow us to probe these questions. Using paired Trp residues that form aromatic clusters on folding, we are able to stabilize two β‐strands connected by varying loop lengths and composition (an example sequence: R W ITVTI – loop – KKIRV W E). Using NMR and CD, both fold stability and folding dynamics can be investigated for these systems. With the 16 residue loop peptide (sequence: R W ITVTI‐(GGGGKK)2GGGG‐KKIRV W E) remaining folded (ΔGU = 1.6 kJ/mol at 295K). To increase stability and extend the series to longer loops, we added an additional Trp/Trp pair in the loop flanking position. With this addition to the strands, the 16 residue loop (sequence: R W ITVRI W ‐(GGGGKK)2GGGG‐ W KTIRV W E) supports a remarkably stable β‐sheet (ΔGU = 6.3 kJ/mol at 295 K, Tm = ~55°C). Given the abundance of loops in binding motifs and between secondary structures, these constructs can be powerful tools for peptide chemists to study loop effects; with the Trp/Trp pair providing spectroscopic probes for assessing both stability and dynamics by NMR.  相似文献   

2.
By combining a favorable turn sequence with a turn flanking Trp/Trp interaction and a C-terminal H-bonding interaction between a backbone amide and an i-2 Trp ring, a particularly stable (DeltaG(U) > 7 kJ/mol) truncated hairpin, Ac-WI-(D-Pro-D-Asn)-KWTG-NH(2), results. In this construct and others with a W-(4-residue turn)-W motif in severely truncated hairpins, the C-terminal Trp is the edge residue in a well-defined face-to-edge (FtE) aryl/aryl interaction. Longer hairpins and those with six-residue turns retain the reversed "edge-to-face" (EtF) Trp/Trp geometry first observed for the trpzip peptides. Mutational studies suggest that the W-(4-residue turn)-W interaction provides at least 3 kJ/mol of stabilization in excess of that due to the greater beta-propensity of Trp. The pi-cation, and Trp/Gly-H(N) interactions have been defined. The latter can give rise to >3 ppm upfield shifts for the Gly-H(N) in -WX(n)G- units both in turns (n = 2) and at the C-termini (n = 1) of hairpins. Terminal YTG units result in somewhat smaller shifts (extrapolated to 2 ppm for 100% folding). In peptides with both the EtF and FtE W/W interaction geometries, Trp to Tyr mutations indicate that Trp is the preferred "face" residue in aryl/aryl pairings, presumably because of its greater pi basicity.  相似文献   

3.
CopC is a periplasmic copper Chaperone protein that has a β‐barrel fold and two metal‐binding sites distinct for Cu(II) and Cu(I). In the article, four mutants (Y79F, Y79W, Y79WW83L, Y79WW83F) were obtained by site‐directed mutagenesis. The far‐UV CD spectra of the proteins were similar, suggesting that mutations did not bring any significant changes in secondary structures. Meanwhile the effects of mutations on the protein's function were manifested by Cu(II) binding. Fluorescence lifetime measurement and quenching of tryptophan fluorescence by acrylamide and KI showed that the microenvironment around Trp83 was more hydrophobic than that around Tyr79 in apoCopC. Unfolding experiments induced by guanidinium chloride (GdnHCl), urea provided the conformational stability of each protein. The Δ<ΔG0element> obtained using the model of structural elements was used to show the role of Tyr79 and Trp83. On the one hand, the <ΔG0element> induced by urea for Y79F, Y79W have a loss of 6.51, 2.03 kJ/mol, respectively, compared with apoCopC, proving that replacement of Tyr79 by Phe or Trp all decreased the protein stability, meaning that the hydrogen bonds interactions between Tyr79 and Thr75 played an important role in stabilizing apoCopC. On the other hand, the <ΔG0element> induced by urea for Y79WW83L have a loss of 11.44 kJ/mol, but for Y79WW83F did a raise of 1.82 kJ/mol compared with Y79W. The replacement of Trp83 by Phe and Leu yields opposite effects on protein stability, which suggested that the aromatic ring of Trp83 was important in maintaining the hydrophobic core of apoCopC.  相似文献   

4.
Hypoxanthine‐guanine‐xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1‐3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5‐fold under activated condition as compared to that of the wild‐type enzyme. The W181T mutant showed 10‐fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross‐correlation analyses show a communication between loop III' and the substrate binding site. Differential cross‐correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Exciton coupling between two chromophores can produce a circular dichroism (CD) couplet that depends on their separation distance, among other factors. Therefore, exciton CD signals arising from aromatic sidechains, especially those of tryptophan (Trp), have been used in various protein conformational studies. However, the long-wavelength component of the commonly used CD couplet produced by a pair of Trp residues is typically located around 230 nm, thereby overlapping significantly with the protein backbone CD signal. This overlap often prevents a direct and quantitative assessment of the Trp CD couplet in question without further spectral analysis. Here, we show that this inconvenience can be alleviated by using a derivative of Trp, 5-cyanotryptophan (TrpCN), as the chromophore. Specifically, through studying a series of peptides that fold into either α-helical or ß-hairpin conformations, we demonstrate that in comparison with the Trp CD couplet, that arising from two TrpCN residues not only is significantly red-shifted but also becomes more intense due to the larger extinction coefficient of the underlying electronic transition. In addition, we show that a pair of p-cyanophenylalanines (PheCN) or a PheCN–TrpCN pair can also produce a distinct exciton CD couplet that can be useful in monitoring conformational changes in proteins.  相似文献   

6.
The aggregation of alpha-synuclein is believed to be a critical step in the etiology of Parkinson's disease. A variety of biophysical techniques were used to investigate the aggregation and fibrillation of alpha-synuclein in which one of the four intrinsic Tyr residues was replaced by Trp, and two others by Phe, in order to permit fluorescence resonance energy transfer (FRET) between residues 39 (Tyr) and 125 (Trp). The mutant Y125W/Y133F/Y136F alpha-synuclein (one Tyr, one Trp) showed fibrillation kinetics similar to that of the wild-type, as did the Y125F/Y133F/Y136F (one Tyr, no Trp) and Y39F/Y125W/Y133F/Y136F (no Tyr, one Trp) mutants. Time-dependent changes in FRET, Fourier transform infrared, Trp fluorescence, dynamic light-scattering and other probes, indicate the existence of a transient oligomer, whose population reaches a maximum at the end of the lag time. This oligomer, in which the alpha-synuclein is in a partially folded conformation, is subsequently converted into fibrils, and has physical properties that are distinct from those of the monomer and fibrils. In addition, another population of soluble oligomers was observed to coexist with fibrils at completion of the reaction. The average distance between Tyr39 and Trp125 decreases from 24.9A in the monomer to 21.9A in the early oligomer and 18.8A in the late oligomer. Trp125 remains solvent-exposed in both the oligomers and fibrils, indicating that the C-terminal domain is not part of the fibril core. No FRET was observed in the fibrils, due to quenching of Tyr39 fluorescence in the fibril core. Thus, aggregation of alpha-synuclein involves multiple oligomeric intermediates and competing pathways.  相似文献   

7.
Homodimeric archaeal histones and heterodimeric eukaryotic histones share a conserved structure but fold through different kinetic mechanisms, with a correlation between faster folding/association rates and the population of kinetic intermediates. Wild-type hMfB (from Methanothermus fervidus) has no intrinsic fluorophores; Met35, which is Tyr in hyperthermophilic archaeal histones such as hPyA1 (from Pyrococcus strain GB-3A), was mutated to Tyr and Trp. Two Tyr-to-Trp mutants of hPyA1 were also characterized. All fluorophores were introduced into the long, central alpha-helix of the histone fold. Far-UV circular dichroism (CD) indicated that the fluorophores did not significantly alter the helical content of the histones. The equilibrium unfolding transitions of the histone variants were two-state, reversible processes, with DeltaG degrees (H2O) values within 1 kcal/mol of the wild-type dimers. The hPyA1 Trp variants fold by two-state kinetic mechanisms like wild-type hPyA1, but with increased folding and unfolding rates, suggesting that the mutated residues (Tyr-32 and Tyr-36) contribute to transition state structure. Like wild-type hMfB, M35Y and M35W hMfB fold by a three-state mechanism, with a stopped-flow CD burst-phase monomeric intermediate. The M35 mutants populate monomeric intermediates with increased secondary structure and stability but exhibit decreased folding rates; this suggests that nonnative interactions occur from burial of the hydrophobic Tyr and Trp residues in this kinetic intermediate. These results implicate the long central helix as a key component of the structure in the kinetic monomeric intermediates of hMfB as well as the dimerization transition state in the folding of hPyA1.  相似文献   

8.
There are two tryptophan residues in the lens alphaB-crystallin, Trp9 and Trp60. We prepared two Trp --> Phe substituted mutants, W9F and W60F, for use in a spectroscopic study. The two tryptophan residues contribute to Trp fluorescence and near-ultraviolet circular dichroism (UV CD) differently. The major difference in the near-UV CD is the contribution of 1La of Trp: it is positive in W60F but becomes negative in W9F. Further analysis of the near-UV CD shows an increased intensity in the region of 270-280 nm for W60F, suggesting that the Tyr48 is affected by the W60F mutation. It appears that Trp60 is located in a more rigid environment than Trp9, which agrees with a recent structural model in which Trp60 is in a beta-strand.  相似文献   

9.
We previously noted that melanomas developing in Cdk4R24C/R24C::Tyr‐NRAS, Arf?/?::Tyr‐NRAS and Trp53F/F::Tyr‐Cre(ER)::Tyr‐NRAS mice exhibited differences in behaviour in vivo. We investigated this phenomenon using global gene expression profiling of lesions from the respective genotypes. While those from the Cdk4‐ and Arf‐mutant mice exhibited similar profiles, the Trp53F/F::Tyr‐Cre(ER)::Tyr‐NRAS melanomas were strikingly different, showing relative down‐regulation of melanocyte‐related genes, and up‐regulation of genes related to neural differentiation. Specifically, they highly expressed genes representative of the myelin‐producing peripheral oligodendrite (Schwann cell) lineage, although histopathologically the lesions did not exhibit the classical features of schwannoma. As Schwann cell precursors can be a cellular origin of melanocytes, it is unsurprising that plasticity with respect to melanocyte‐neural differentiation can occur in melanoma. What is surprising is the genotype proclivity. Comparison of gene expression signatures revealed that melanomas from the Trp53‐mutant mice show significant similarities with a subset of aggressive human melanomas with relatively low levels of MITF.  相似文献   

10.
To elucidate the roles of tryptophan residues in the structure, stability, and function of Escherichia coli dihydrofolate reductase (DHFR), its five tryptophan residues were replaced by site-directed mutagenesis with leucine, phenylalanine or valine (W22F, W22L, W30L, W47L, W74F, W74L, W133F, and W133V). Far-ultraviolet circular dichroism (CD) spectra of these mutants reveal that exciton coupling between Trp47 and Trp74 strongly affects the peptide CD of wild-type DHFR, and that Trp133 also contributes appreciably. No additivity was observed in the contributions of individual tryptophan residues to the fluorescence spectrum of wild-type DHFR, Trp74 having a dominant effect. These single-tryptophan mutations induce large changes in the free energy of urea unfolding, which showed values of 1.79-7.14 kcal/mol, compared with the value for wild-type DHFR of 6.08 kcal/mol. Analysis of CD and fluorescence spectra suggests that thermal unfolding involves an intermediate with the native-like secondary structure, the disrupted Trp47-Trp74 exciton coupling, and the solvent-exposed Trp30 and Trp47 side chains. All the mutants except W22L (13%) retain more than 50% of the enzyme activity of wild-type DHFR. These results demonstrate that the five tryptophan residues of DHFR play important roles in its structure and stability but do not crucially affect its enzymatic function.  相似文献   

11.
T D Pfister  A J Gengenbach  S Syn  Y Lu 《Biochemistry》2001,40(49):14942-14951
The role of two tryptophans (Trp51 and Trp191) and six tyrosines (Tyr36, Tyr39, Tyr42, Tyr187, Tyr229, and Tyr236) in yeast cytochrome c peroxidase (CcP) has been probed by site-directed mutagenesis. A series of sequential mutations of these redox-active amino acid residues to the corresponding, less oxidizable residues in lignin peroxidase (LiP) resulted in an increasingly more stable compound I, with rate constants for compound I decay decreasing from 57 s(-1) for CcP(MI, W191F) to 7 s(-1) for CcP(MI, W191F,W51F,Y187F,Y229F,Y236F,Y36F,Y39E,Y42F). These results provide experimental support for the proposal that the stability of compound I depends on the number of endogenous oxidizable amino acids in proteins. The higher stability of compound I in the variant proteins also makes it possible to observe its visible absorption spectroscopic features more clearly. The effects of the mutations on oxidation of ferrocytochrome c and 2,6-dimethoxyphenol were also examined. Since the first mutation in the series involved the change of Trp191, a residue that plays a critical role in the electron transfer pathway between CcP and cyt c, the ability to oxidize cyt c was negligible for all mutant proteins. On the other hand, the W191F mutation had little effect on the proteins' ability to oxidize 2,6-dimethoxyphenol. Instead, the W51F mutation resulted in the largest increase in the k(cat)/K(M), from 2.1 x 10(2) to 5.0 x 10(3) M(-1) s(-1), yielding an efficiency that is comparable to that of manganese peroxidase (MnP). The effect in W51F mutation can be attributed to the residue's influence on the stability and thus reactivity of the ferryl oxygen of compound II, whose substrate oxidation is the rate-determining step in the reaction mechanism. Finally, out of all mutant proteins in this study, only the variant containing the Y36F, Y39E, and Y42F mutations was found to prevent covalent protein cross-links in the presence of excess hydrogen peroxide and in the absence of exogenous reductants. This finding marks the first time a CcP variant is incapable of forming protein cross-links and confirms that one of the three tyrosines must be involved in the protein cross-linking.  相似文献   

12.
The side chain of Gln143, a conserved residue in manganese superoxide dismutase (MnSOD), forms a hydrogen bond with the manganese-bound solvent and is critical in maintaining catalytic activity. The side chains of Tyr34 and Trp123 form hydrogen bonds with the carboxamide of Gln143. We have replaced Tyr34 and Trp123 with Phe in single and double mutants of human MnSOD and measured their catalytic activity by stopped-flow spectrophotometry and pulse radiolysis. The replacements of these side chains inhibited steps in the catalysis as much as 50-fold; in addition, they altered the gating between catalysis and formation of a peroxide complex to yield a more product-inhibited enzyme. The replacement of both Tyr34 and Trp123 in a double mutant showed that these two residues interact cooperatively in maintaining catalytic activity. The crystal structure of Y34F/W123F human MnSOD at 1.95 A resolution suggests that this effect is not related to a conformational change in the side chain of Gln143, which does not change orientation in Y34F/W123F, but rather to more subtle electronic effects due to the loss of hydrogen bonding to the carboxamide side chain of Gln143. Wild-type MnSOD containing Trp123 and Tyr34 has approximately the same thermal stability compared with mutants containing Phe at these positions, suggesting the hydrogen bonds formed by these residues have functional rather than structural roles.  相似文献   

13.
Wyman AJ  Popelkova H  Yocum CF 《Biochemistry》2008,47(24):6490-6498
The extrinsic photosystem II PsbO subunit (manganese-stabilizing protein) contains near-UV CD signals from its complement of aromatic amino acid residues (one Trp, eight Tyr, and 13 Phe residues). Acidification, N-bromosuccinimide modification of Trp, reduction or elimination of a disulfide bond, or deletion of C-terminal amino acids abolishes these signals. Site-directed mutations that substitute Phe for Trp241 and Tyr242, near the C-terminus of PsbO, were used to examine the contribution of these residues to the activity and spectral properties of the protein. Although this substitution is, in theory, conservative, neither mutant binds efficiently to PSII, even though these proteins appear to retain wild-type solution structures. Removal of six residues from the N-terminus of the W241F mutant restores activity to near-wild-type levels. The near-UV CD spectra of the mutants are modified; well-defined Tyr and Trp peaks are lost. Characterizations of the fluorescence spectra of the full-length WF and YF mutants indicate that Y242 contributes significantly to PsbO's Tyr fluorescence emission and that an excited-state tyrosinate could be present in PsbO. Deletion of W241 shows that this residue is a major contributor to PsbO's fluorescence emission. Loss of function is consistent with the proposal that a native C-terminal domain is required for PsbO binding and activity, and restoration of activity by deletion of N-terminal amino acids may provide some insights into the evolution of this important photosynthetic protein.  相似文献   

14.
Trp‐cage miniprotein was used to investigate the role of a salt‐bridge (Asp9–Arg16) in protein formation, by mutating residues at both sides, we mapped its contribution to overall stability and its role in folding mechanism. We found that both of the above side‐chains are also part of a dense interaction network composed of electrostatic, H‐bonding, hydrophobic, etc. components. To elucidate the fold stabilizing effects, we compared and contrasted electronic circular dichroism and NMR data of miniproteins equipped with a salt‐bridge with those of the salt‐bridge deleted mutants. Data were acquired both in neutral and in acidic aqueous solutions to decipher the pH dependency of both fully and partially charged partners. Our results indicate that the folding of Trp‐cage miniproteins is more complex than a simple two‐state process as we detected an intermediate state that differs significantly from the native fold. The intermediate formation is related to the salt‐bridge stabilization; in the miniprotein variants equipped with salt‐bridge the population of the intermediate state at acidic pH is significantly higher than it is for the salt‐bridge deleted mutants. In this molecular framework Arg16 stabilizes more than Asp9 does, because of its higher degree of 3D‐fold cooperation. In conclusion, the Xxx$^{9} \leftrightarrow$ Yyy16 salt‐bridge is not an isolated entity of this fold; rather it is an integrated part of a complex interaction network. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Time-resolved and steady-state fluorescence have been used to resolve the heterogeneous emission of single-tryptophan-containing mutants of Trp repressors W19F and W99F into components. Using iodide as the quencher, the fluorescence-quenching-resolved spectra (FQRS) have been obtained The FQRS method shows that the fluorescence emission of Trp99 can be resolved into two component spectra characterized by maxima of fluorescence emission at 338 and 328 nm. The redder component is exposed to the solvent and participates in about 21% of the total fluorescence emission of TrpR W19F. The second component is inacessible to iodide, but is quenched by acrylamide. The tryptophan residue 19 present in TrpR W99F can be resolved into two component spectra using the FQRS method and iodide as a quencher. Both components of Trp19 exhibit similar maxima of emission at 322–324 nm and both are quenchable by iodide. The component more quenchable by iodide participates in about 38% of the total TrpR W99F emission. The fluorescence lifetime measurements as a function of iodide concentration support the existence of two classes of Trp99 and Trp19 in the Trp repressor. Our results suggest that the Trp aporepressor can exist in the ground state in two distinct conformational states which differ in the microenvironment of the Trp residues.Abbreviations TrpR tryptophan aporepressor fromE. coli - TrpR W19F TrpR mutant with phenylalanine substituted for tryptophan at position 19 - TrpR W99F TrpR mutant with phenylalanine substituted for tryptophan at position 99 - FQRS fluorescence-quenching-resolved spectra - FPLC fast protein liquid chromatography  相似文献   

16.
Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N2 ⇆ I2 ⇆ 2U) process involving a dimeric intermediate (I2). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N2 ⇆ I2 transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.  相似文献   

17.
The gene 5 protein (g5p) of the Ff virus contains five Tyr, individual mutants of which have now all been characterized by CD spectroscopy. The protein has a dominant tyrosyl 229-nm L(a) CD band that is shown to be approximately the sum of the five individual Tyr contributions. Tyr41 is particularly important in contributing to the high cooperativity with which the g5p binds to ssDNA, and Y41F and Y41H mutants are known to differ in dimer-dimer packing interactions in crystal structures. We compared the solution structures and binding properties of the Y41F and Y41H mutants using CD spectroscopy. Secondary structures of the mutants were similar by CD analyses and close to those derived from the crystal structures. However, there were significant differences in the binding properties of the two mutant proteins. The Y41H protein had an especially low binding affinity and perturbed the spectrum of poly[d(A)] in 2 mM Na(+) much less than did Y41F and the wild-type gene 5 proteins. Moreover, a change in the Tyr 229 nm band, assigned to the perturbation of Tyr34 at the dimer-dimer interface, was absent in titrations with the Y41H mutant under low salt conditions. In contrast, titrations with the Y41H mutant in 50 mM Na(+) exhibited typical CD changes of both the nucleic acid and the Tyr 229-nm band. Thus, protein-protein and g5p-ssDNA interactions appeared to be mutually influenced by ionic strength, indicative of correlated changes in the ssDNA binding and cooperativity loops of the protein or of indirect structural constraints.  相似文献   

18.
Chitinase B (ChiB) of S. marcescens has five exposed aromatic residues linearly aligned toward the catalytic cleft, Tyr481 and Trp479 in the C-terminal domain, and Trp252, Tyr240 and Phe190 in the catalytic domain. To determine the contribution of these residues to the hydrolysis of crystalline beta-chitin, site-directed mutagenesis, to replace them by alanine, was carried out. The Y481A, W479A, W252A, and Y240A mutations all decreased the binding activity and hydrolyzing activity toward beta-chitin microfibrils. Substitution of Trp residues affected the binding activity more severely than that of Tyr residues. The F190A mutation decreased neither the binding activity nor the hydrolyzing activity. None of the mutations decreased the hydrolyzing activity toward soluble substrates. These results suggest that ChiB hydrolyzes crystalline beta-chitin via a mechanism in which four exposed aromatic residues play important roles, similar to the mechanism of hydrolysis by ChiA of this bacterium, although the directions of hydrolysis of the two chitinases are opposite.  相似文献   

19.
Src homology 3 (SH3) domains are small noncatalytic protein modules capable of mediating protein-protein interactions. We previously demonstrated that the association of a ligand peptide RLP1 (RKLPPRPSK) causes environmental and structural changes of Trp55 and some of seven Tyr residues in the phosphatidylinositol 3-kinase (PI3K) SH3 domain by circular dichroism (CD) and 235-nm excited UV resonance Raman (UVRR) spectroscopies [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr12, Tyr14, and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue. Among these three residues, Tyr14 was found to be a main contributor to the UVRR spectral change upon the RLP1 binding. Interestingly, CD and UVRR analyses revealed that RLP1 associates with the Y14F and Y14H mutants in different ways. These results suggest that Tyr14 plays a crucial role in the ligand recognition, and the amino acid substitution at Tyr14 affects the mode of PI3K SH3-ligand interaction. Our findings give an insight into how SH3 domains can produce diversity and specificity to transduce signaling within cells.  相似文献   

20.
WD40‐repeat proteins are abundant and play important roles in forming protein complexes. The domain usually has seven WD40 repeats, which folds into a seven β‐sheet propeller with each β‐sheet in a four‐strand structure. An analysis of 20 available WD40‐repeat proteins in Protein Data Bank reveals that each protein has at least one Asp‐His‐Ser/Thr‐Trp (D‐H‐S/T‐W) hydrogen‐bonded tetrad, and some proteins have up to six or seven such tetrads. The relative positions of the four residues in the tetrads are also found to be conserved. A sequence alignment analysis of 560 WD40‐repeat protein sequences in human reveals very similar features, indicating that such tetrad may be a general feature of WD40‐repeat proteins. We carried out density functional theory and found that these tetrads can lead to significant stabilization including hydrogen‐bonding cooperativity. The hydrogen bond involving Trp is significant. These results lead us to propose that the tetrads may be critical to the stability and the mechanism of folding of these proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号