首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a powerful tool of cell screening and cell purification, we developed a novel method to kill adherent cells as cultured on a substrate by micro‐projection of incoherent visible light. To kill the cells by the mild light irradiated by electrically controllable micro‐projection systems currently available, we introduced the assist of the photo‐responsive culture substrates functionalized with a photo‐acid‐generating polymer. In clear contrast to the existing laser‐based methods requiring point scanning, areal micro‐prjection of blue light with the wavelength 436 nm killed many CHO‐K1 cells at a time in the irradiated area on the substrate. The effect of the photo‐generated acid was so confined that selective killing of targeted cells was achieved without critical damage to the neighboring cells. Further, we demonstrated the photo‐selective killing of the adherent cells after preliminarily patterning through the photo‐induced removal of cell adhesion‐inhibiting polymer. Biotechnol. Bioeng. 2013; 110: 348–352. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   

4.
The purpose of this study was to figure out the effect of ciRS‐7/miR‐7/NF‐κB axis on the development of non‐small cell lung cancer (NSCLC). In response, the expressions of ciRS‐7, miR‐7 and NF‐κB subunit (ie RELA) within NSCLC tissues and cell lines were determined with real‐time polymerase chain reaction (RT‐PCR) and Western blot. Moreover, the NSCLC cells were transfected with pcDNA3‐ciRS‐7‐ir, pcDNA3‐ciRS‐7, miR‐NC and miR‐7 mimic. Furthermore, the targeted relationships between ciRS‐7 and miR‐7, as well as between miR‐7 and RELA, were confirmed by luciferase reporter assay. The proliferation, migration and apoptosis of NSCLC cells were, successively, measured using CCK‐8 assay, wound‐healing assay and flow cytometry test. Consequently, ciRS‐7, miR‐7, histopathological grade, lymph node metastasis and histopathological stage could independently predict the prognosis of patients with NSCLC (all P < .05). Moreover, remarkably up‐regulated ciRS‐7 and RELA expressions, as along with down‐regulated miR‐7 expressions, were found within NSCLC tissues and cells in comparison with normal ones (P < .05). Besides, overexpressed ciRS‐7 and underexpressed miR‐7 were correlated with increased proliferation, migration and invasion, yet reduced apoptosis rate of NSCLC cells (P < .05). More than that, ciRS‐7 specifically targeted miR‐7 to reduce its expressions (P < .05). Ultimately, the NSCLC cells within miR‐7 + RELA group were observed with superior proliferative, migratory and invasive capabilities than those within miR‐7 group (P < .05), and RELA expression was also significantly modified by both ciRS‐7 and miR‐7 (P < .05). In conclusion, the ciRS‐7/miR‐7/NF‐kB axis could exert pronounced impacts on the proliferation, migration, invasion and apoptosis of NSCLC cells.  相似文献   

5.
Cryopreservation provides the foundation for research, development, and manufacturing operations in the CHO‐based biopharmaceutical industry. Despite its criticality, studies are lacking that explicitly demonstrate that the routine cell banking process and the potential stress and damage during cryopreservation and recovery from thaw have no lasting detrimental effects on CHO cells. Statistics are also scarce on the decline of cell‐specific productivity (Qp) over time for recombinant CHO cells developed using the glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection system. To address these gaps, we evaluated the impact of freeze‐thaw on 24 recombinant CHO cell lines (generated by the GS/MSX selection system) using a series of production culture assays. Across the panel of cell lines expressing one of three monoclonal antibodies (mAbs), freeze‐thaw did not result in any significant impact beyond the initial post‐thaw passages. Production cultures sourced from cryopreserved cells and their non‐cryopreserved counterparts yielded similar performance (growth, viability, and productivity), product quality (size, charge, and glycosylation distributions), and flow cytometric profiles (intracellular mAb expression). However, many production cultures yielded lower Qp at increased cell age: 17 of the 24 cell lines displayed ≥20% Qp decline after ~2–3 months of passaging, irrespective of whether the cells were previously cryopreserved. The frequency of Qp decline underscores the continued need for understanding the underlying mechanisms and for careful clone selection. Because our experiments were designed to decouple the effects of cryopreservation from those of cell age, we could conclusively rule out freeze‐thaw as a cause for Qp decline. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:463–477, 2018  相似文献   

6.
In this study, a newly isolated strain screened from the indoxacarb‐rich agricultural soils, Bacillus cereus WZZ006, has a high stereoselectivity to racemic substrate 5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester was obtained by bio‐enzymatic resolution. After the 36‐hour hydrolysis in 50‐mM racemic substrate under the optimized reaction conditions, the e.e.s was up to 93.0% and the conversion was nearly 53.0% with the E being 35.0. Therefore, B cereus WZZ006 performed high‐level ability to produce (S)‐5‐chloro‐1‐oxo‐2,3‐dihydro‐2‐hydroxy‐1H‐indene‐2‐carboxylic acid methyl ester. This study demonstrates a new biocatalytic process route for preparing the indoxacarb chiral intermediates and provides a theoretical basis for the application of new insecticides in agricultural production.  相似文献   

7.
The reflection of picosecond ultrasonic pulses from a cell‐substrate interface is used to probe cell‐biomaterial adhesion with a subcell resolution. We culture monocytes on top of a thin biocompatible Ti metal film, supported by a transparent sapphire substrate. Low‐energy femtosecond pump laser pulses are focused at the bottom of the Ti film to a micron spot. The subsequent ultrafast thermal expansion launches a longitudinal acoustic pulse in Ti, with a broad spectrum extending up to 100 GHz. We measure the acoustic echoes reflected from the Ti‐cell interface through the transient optical reflectance changes. The time‐frequency analysis of the reflected acoustic pulses gives access to a map of the cell acoustic impedance Zc and to a map of the film‐cell interfacial stiffness K simultaneously. Variations in Zc across the cell are attributed to rigidity and density fluctuations within the cell, whereas variations in K are related to interfacial intermolecular forces and to the nano‐architecture of the transmembrane bonds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The insulin‐like growth factor I (IGF‐I) signalling pathway contributes a major role on various cancer cell proliferation, survival and cell cycle. The present study was aimed to investigate the effect of nimbolide on IGF signalling and cell cycle arrest in MCF‐7 and MDA‐MB‐231 breast cancer cell lines. The protein expression of IGF signalling molecules and cell cycle protein levels was assessed by western blot analysis. In order to study the interaction of nimbolide on IGF‐1 signalling pathway, IGF‐I and phosphoinositide 3‐kinase (PI3K) inhibitor (LY294002) were used to treat MCF‐7 and MDA‐MB‐231 cells. Further, the cell cycle arrest was analysed by flow cytometry. The protein expression of IGF signalling molecules was significantly decreased in nimbolide‐treated breast cancer cells. PI3K inhibitor and IGF‐I with nimbolide treatment notably inhibited phosphorylated Akt. The cell cycle arrest was observed at the G0/G1 phase, and accumulation of apoptotic cells was observed in nimbolide‐treated breast cancer cell lines. Nimbolide also increased the protein expression of p21 and decreased the cyclins in both the cell lines. Nimbolide decreases the proliferation of breast cancer cells by modulating the IGF signalling molecules, which could be very useful for the breast cancer treatment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The biochemical analysis of human cell membrane proteins remains a challenging task due to the difficulties in producing sufficient quantities of functional protein. G protein‐coupled receptors (GPCRs) represent a main class of membrane proteins and drug targets, which are responsible for a huge number of signaling processes regulating various physiological functions in living cells. To circumvent the current bottlenecks in GPCR studies, we propose the synthesis of GPCRs in eukaryotic cell‐free systems based on extracts generated from insect (Sf21) cells. Insect cell lysates harbor the fully active translational and translocational machinery allowing posttranslational modifications, such as glycosylation and phosphorylation of de novo synthesized proteins. Here, we demonstrate the production of several GPCRs in a eukaryotic cell‐free system, performed within a short time and in a cost‐effective manner. We were able to synthesize a variety of GPCRs ranging from 40 to 133 kDa in an insect‐based cell‐free system. Moreover, we have chosen the μ opioid receptor (MOR) as a model protein to analyze the ligand binding affinities of cell‐free synthesized MOR in comparison to MOR expressed in a human cell line by “one‐point” radioligand binding experiments. Biotechnol. Bioeng. 2017;114: 2328–2338. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

11.
Current cell therapies, despite all of the progress in this field, still faces major ethical, technical and regulatory hurdles. Because these issues possibly stem from the current, restricted, stereotypical view of cell ultrastructure and function, we must think radically about the nature of the cell. In this regard, the author's theory of the cell memory disc offers ‘memory‐based therapy’, which, with the help of immune system rejuvenation, nervous system control and microparticle‐based biodrugs, may have substantial therapeutic potential. In addition to its potential value in the study and prevention of premature cell aging, age‐related diseases and cell death, memory therapy may improve the treatment of diseases that are currently limited by genetic disorders, risk of tumour formation and the availability and immunocompatibility of tissue transplants.  相似文献   

12.
13.
Stimulation of T cells by the T‐cell receptor (TCR)/CD3 complex results in interleukin‐2 (IL‐2) synthesis and surface expression of the IL‐2 receptor (IL‐2R), which in turn drive T‐cell proliferation. However, the significance of the requirement of IL‐2 in driving T‐cell proliferation, when TCR stimulation itself delivers potential mitogenic signals, is unclear. We show that blocking of IL‐2 synthesis by Cyclosporin A (CsA) suppressed both the Concanavalin A (Con A)‐ and phorbol myristate acetate (PMA)/ionomycin‐induced proliferation of T cells. The latter is also inhibited by anti‐IL‐2R. Kinetic studies showed that T‐cell proliferation begins to become resistant to CsA inhibition by about 12 h and became largely resistant by 18 h of stimulation. PMA, the protein kinase C activator, enhanced Con A‐induced T‐cell proliferation if added only within first 12 h of stimulation, and not after that. Given the fact that, in the present study, TCR is downregulated within 2 h of Con A stimulation and T cells entered the S phase of cell cycle by about 18 h of stimulation, the above results suggest that TCR stimulation provides the initial trigger to the resting T cells, which allows the cells to traverse the first two third portions of G1 phase of cell cycle and become proliferation competent. IL‐2 action begins afterward, delivering the actual proliferation signal(s), allowing the cells to traverse the rest of G1 phase and enter the S phase of the cell cycle. J. Cell. Biochem. 76:37–43, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
15.
Recent studies have reported that three‐dimensionally cultured cells have more physiologically relevant functions than two‐dimensionally cultured cells. Cells are three‐dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ‐on‐a‐chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation‐based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ‐on‐a‐chip. Last, we also discuss the challenges of hydrogel‐based three‐dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580–589, 2017  相似文献   

16.
The antigen specificity of cytotoxic T cells, provided by T‐cell receptors (TCRs), plays a central role in human autoimmune diseases, infection, and cancer. As the TCR repertoire is unique in individual cytotoxic T cells, a strategy to analyze its gene rearrangement at the single‐cell level is required. In this study, we applied a high‐density microcavity array enabling target cell screening of several thousands of single cells for identification of functional TCR‐β gene repertoires specific to melanoma (gp100) and cytomegalovirus (CMV) antigens. T cells expressing TCRs with the ability to recognize fluorescent‐labeled antigen peptide tetramers were isolated by using a micromanipulator under microscopy. Regularly arranged cells on the microcavity array eased detection and isolation of target single cells from a polyclonal T‐cell population. The isolated single cells were then directly utilized for RT‐PCR. By sequencing the amplified PCR products, antigen‐specific TCR‐β repertoires for gp100 and human cytomegalovirus antigens were successfully identified at the single‐cell level. This simple, accurate, and cost‐effective technique for single‐cell analysis has further potential as a valuable and widely applicable tool for studies on gene screening and expression analyses of various kinds of cells. Biotechnol. Bioeng. 2010;106: 311–318. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Wogonin exerts anti‐tumour activities via multiple mechanisms. We have identified that high‐dose wogonin (50 or 100 mg/kg) could inhibit the growth of transplanted tumours by directly inducing tumour apoptosis and promoting DC, T and NK cell recruitment into tumour tissues to enhance immune surveillance. However, wogonin (20–50 μM) ex vivo prevents inflammation by inhibiting NF‐κB and Erk signalling of macrophages and epithelial cells. It is elusive whether high‐dose wogonin promotes or prevents inflammation. To investigate the effects of high‐dose wogonin on murine colitis induced by dextran sodium sulphate (DSS), mice were co‐treated with DSS and various doses of wogonin. Intraperitoneal administration of wogonin (100 mg/kg) exacerbated DSS‐induced murine colitis. More CD4+ CD44+ and CD8+ CD44+ cells were located in the inflamed colons in the wogonin (100 mg/kg) treatment group than in the other groups. Frequencies of CD4+ CD25+ CD127? and CD4+ CD25+ Foxp3+ cells in the colons and spleen respectively, were reduced by wogonin treatment. Ex vivo stimulations with high‐dose wogonin (50–100 μg/ml equivalent to 176–352 μM) could synergize with IL‐2 to promote the functions of CD4+ and CD8+ cells. However, regulatory T cell induction was inhibited. Wogonin stimulated the activation of NF‐κB and Erk but down‐regulated STAT3 phosphorylation in the CD4+ T cells. Wogonin down‐regulated Erk and STAT3‐Y705 phosphorylation in the regulatory T cells but promoted NF‐κB and STAT3‐S727 activation. Our study demonstrated that high‐dose wogonin treatments would enhance immune activity by stimulating the effector T cells and by down‐regulating regulatory T cells.  相似文献   

18.
Advances in microscopy with new visualization possibilities often bring dramatic progress to our understanding of the intriguing cellular machinery. Picosecond optoacoustic micro‐spectroscopy is an optical technique based on ultrafast pump‐probe generation and detection of hypersound on time durations of picoseconds and length scales of nanometers. It is experiencing a renaissance as a versatile imaging tool for cell biology research after a plethora of applications in solid‐state physics. In this emerging context, this work reports on a dual‐probe architecture to carry out real‐time parallel detection of the hypersound propagation inside a cell that is cultured on a metallic substrate, and of the hypersound reflection at the metal/cell adhesion interface. Using this optoacoustic modality, several biophysical properties of the cell can be measured in a noncontact and label‐free manner. Its abilities are demonstrated with the multiple imaging of a mitotic macrophage‐like cell in a single run experiment.   相似文献   

19.
Understanding the mechanisms that direct mesenchymal stem cell (MSC) self‐renewal fate decisions is a key to most tissue regenerative approaches. The aim of this study here was to investigate the mechanisms of action of platelet‐derived growth factor receptor β (PDGFRβ) signalling on MSC proliferation and differentiation. MSC were cultured and stimulated with PDGF‐BB together with inhibitors of second messenger pathways. Cell proliferation was assessed using ethynyl‐2′‐deoxyuridine and phosphorylation status of signalling molecules assessed by Western Blots. To assess differentiation potentials, cells were transferred to adipogenic or osteogenic media, and differentiation assessed by expression of differentiation association genes by qRT‐PCR, and by long‐term culture assays. Our results showed that distinct pathways with opposing actions were activated by PDGF. PI3K/Akt signalling was the main contributor to MSC proliferation in response to activation of PDGFRβ. We also demonstrate a negative feedback mechanism between PI3K/Akt and PDGFR‐β expression. In addition, PI3K/Akt downstream signal cascades, mTOR and its associated proteins p70S6K and 4E‐BP1 were involved. These pathways induced the expression of cyclin D1, cyclin D3 and CDK6 to promote cell cycle progression and MSC proliferation. In contrast, activation of Erk by PDGFRβ signalling potently inhibited the adipocytic differentiation of MSCs by blocking PPARγ and CEBPα expression. The data suggest that PDGFRβ‐induced Akt and Erk pathways regulate opposing fate decisions of proliferation and differentiation to promote MSC self‐renewal. Thus, activation of multiple intracellular cascades is required for successful and sustainable MSC self‐renewal strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号