首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin is an appetite‐stimulating peptide. Serine 3 on ghrelin must be acylated by octanoate via the enzyme ghrelin‐O‐acyltransferase (GOAT) for the peptide to bind and activate the cognate receptor, growth hormone secretagogue receptor type 1a (GHSR1a). Interest in GHSR1a increased dramatically when GHSR1a mRNA was demonstrated to be widespread in the brain, including the cortex and hippocampus, indicating that it has multifaceted functions beyond the regulation of metabolism. However, the source of octanoylated ghrelin for GHSR1a in the brain, outside of the hypothalamus, is not well understood. Here, we report the presence of GOAT and its ability to acylate non‐octanoylated ghrelin in the hippocampus. GOAT immunoreactivity is aggregated at the base of the dentate granule cell layer in the rat and wild‐type mouse. This immunoreactivity was not affected by the pharmacological inhibition of GHSR1a or the metabolic state‐dependent fluctuation of systemic ghrelin levels. However, it was absent in the GHSR1a knockout mouse hippocampus, pointing the possibility that the expression of GHSR1a may be a prerequisite for the production of GOAT. Application of fluorescein isothiocyanate (FITC)‐conjugated non‐octanoylated ghrelin in live hippocampal slice culture (but not in fixed culture or in the presence of GOAT inhibitors) mimicked the binding profile of FITC‐conjugated octanoylated ghrelin, suggesting that extracellularly applied non‐octanoylated ghrelin was acylated by endogenous GOAT in the live hippocampus while GOAT being mobilized out of neurons. Our results will advance the understanding for the role of endogenous GOAT in the hippocampus and facilitate the search for the source of ghrelin that is intrinsic to the brain.

  相似文献   


2.
Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z‐factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.  相似文献   

3.
We report a new format for measuring ATP/[(32)P]pyrophosphate exchange in a higher throughput assay of adenylation domains (A-domains) of non-ribosomal peptide synthetases. These enzymes are key specificity determinants in the assembly line biosynthesis of non-ribosomal peptides, an important class of natural products with an activity spectrum ranging from antibiotic to antitumor activities. Our assay in 96-well format allows the rapid measurement of approximately 1000 data points per week as a basis for precise assessment of the kinetics of A-domains. The assay also allows quantitative high-throughput screening of the substrate specificity of A-domains identifying alternative, promiscuous substrates. We show that our assay is able to give high quality data for the T278A mutant of the A-domain of the tyrocidine synthetase module TycA with a 330-fold lower k(cat)/K(M). The large dynamic range of this assay will be useful for the screening of libraries of mutant A-domains. Finally we describe and evaluate a procedure for the high-throughput purification of A-domains in 96-well format for the latter purpose. Our approach will be of utility for mechanistic analysis, substrate profiling and directed evolution of the A-domains, to ultimately enable the combinatorial biosynthesis of non-natural analogues of non-ribosomal peptides that may have potential as alternative drug candidates.  相似文献   

4.
Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O‐methylation reactions. cDNAs encoding the O‐methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab‐causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5‐dihydroxybiphenyl, supplied by the first pathway‐specific enzyme, biphenyl synthase (BIS). 3,5‐Dihydroxybiphenyl underwent a single methylation reaction in the presence of S‐adenosyl‐l ‐methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5‐hydroxyferulic acid. Both substrates were only methylated at the meta‐positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor‐treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N‐ and C‐terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented.  相似文献   

5.
6.
7.
Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of acetylcholine, a neurotransmitter associated with muscle movement, cognition, and other neurobiological processes. Inhibition of AChE activity can serve as a therapeutic mechanism, but also cause adverse health effects and neurotoxicity. In order to efficiently identify AChE inhibitors from large compound libraries, homogenous cell‐based assays in high‐throughput screening platforms are needed. In this study, a fluorescent method using Amplex Red (10‐acetyl‐3,7‐dihydroxyphenoxazine) and the Ellman absorbance method were both developed in a homogenous format using a human neuroblastoma cell line (SH‐SY5Y). An enzyme‐based assay using Amplex Red was also optimized and used to confirm the potential inhibitors. These three assays were used to screen 1368 compounds, which included a library of pharmacologically active compounds (LOPAC) and 88 additional compounds from the Tox21 program, at multiple concentrations in a quantitative high‐throughput screening (qHTS) format. All three assays exhibited exceptional performance characteristics including assay signal quality, precision, and reproducibility. A group of inhibitors were identified from this study, including known (e.g. physostigmine and neostigmine bromide) and potential novel AChE inhibitors (e.g. chelerythrine chloride and cilostazol). These results demonstrate that this platform is a promising means to profile large numbers of chemicals that inhibit AChE activity.  相似文献   

8.
Trehalose 6-phosphate synthase(TPS),an enzyme that hydrolyzes two glucose molecules to yield trchalose,plays a pivotal role in various physiological processes.In this study,we cloned the trehalose-6-phosphate synthase gene(HvTPS)and investigated its expression patterns in various tssues and d:velopmental stages in Heortia vitessoides Moore(Lepidoptera:Crambidac).HvTPS was highly expressed in the fat body and after pupation or before molting.We knocked down TPS in H.vitessoides by RNA interference and found that 3.0μg of dsHvTPS resulted in optimal interference at 24 h and 36 h post-injection and caused a sharp decline in the survival rate during the 5th instar larval-pupal stage and obviously abnormal or lethal phenotypes.Additionally.compared to the controls,TPS activity and trehalose contents were significantly lower and the glucose content was significantly higher 24 h or 36 h after injection with 3.0μg of dsHIvTPS.Furthermore,the silencing of HvTPS suppressed the cxpression of six key genecs in the chitin biosynthesis pathway and one key gene related to lipid catabolism.The expression levels of two genes associated with lipid biosynthesis were upregulated.These results strongly suggest that HvTPS is essential for the normal growth and development of H.vitessoides and provide a reference for further studies of the utility of key genes involved in chitin and lipid biosynthesis for controlling insect development.  相似文献   

9.
10.
11.
Isoprenoids consist of a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP). In plants, IDP is synthesized in the cytoplasm from mevalonic acid via the MVA pathway, and in plastids from 2‐C‐methyl‐d ‐erythritol‐4‐phosphate through the MEP pathway. The enzyme IDP isomerase (IDI) catalyzes the interconversion between IDP and DMADP. Most plants contain two IDI enzymes, the functions of which are characteristically compartmentalized in the cells. Carotenoids are isoprenoids that play essential roles in photosynthesis and provide colors to flowers and fruits. They are synthesized in the plastids via the MEP pathway. Fruits of Solanum lycopersicum (tomato) accumulate high levels of the red carotene lycopene. We have identified mutations in tomato that reduce overall carotenoid accumulation in fruits. Four alleles of a locus named FRUIT CAROTENOID DEFICIENT 1 (fcd1) were characterized. Map‐based cloning of fcd1 indicated that this gene encodes the plastidial enzyme IDI1. Lack of IDI1 reduced the concentration of carotenoids in fruits, flowers and cotyledons, but not in mature leaves. These results indicate that the plastidial IDI plays an important function in carotenoid biosynthesis, thus highlighting its role in optimizing the ratio between IDP and DMADP as precursors for different downstream isoprenoid pathways.  相似文献   

12.
There is a major need in drug discovery for quick, precise, and cost‐effective high‐throughput screening (HTS) systems in the early stages of drug research. The Parallel Artificial Membrane Permeability Assay (PAMPA) aims at predicting the passive membrane properties of drugs. Since 1998, model membranes have been developed to predict gastro‐intestinal absorption or transport through the blood–brain barrier. This paper presents recent results in a project aiming to improve the prediction of transdermal penetration. Using the PAMPA system, we investigated the effect of four newly synthetized ceramide analogues (certramides) on the permeability of three model compounds (ciprofloxacin, nifedipine, and verapamil). The certramides differ in the length of one alkyl chain, while the other alkyl chain and the head group remained the same. A relationship between the membrane concentration of certramides (from 0 to 100%) and the permeability of compounds was found, and the results of different certramides were compared. The strongest effect on permeability was caused by the ceramide analogue CTR(C12–C16). The reproducibility of the experiments and the impact of presence or absence of organic solvents (dodecane and CHCl3) in the membrane were also investigated.  相似文献   

13.
14.
15.
16.
The D ‐aldohexose dehydrogenase from the thermoacidophilic archaeon Thermoplasma acidophilum (AldT) is a homotetrameric enzyme that catalyzes the oxidation of several D ‐aldohexoses, especially D ‐mannose. AldT comprises a unique C‐terminal tail motif (residues 247–255) that shuts the active‐site pocket of the neighboring subunit. The functional role of the C‐terminal tail of AldT has been investigated using mutational and crystallographic analyses. A total of four C‐terminal deletion mutants (Δ254, Δ253, Δ252, and Δ249) and two site‐specific mutants (Y86G and P254G) were expressed by Escherichia coli and purified. Enzymatic characterization of these mutants revealed that the C‐terminal tail is a requisite and that the interaction between Tyr86 and Pro254 is critical for enzyme activity. The crystal structure of the Δ249 mutant was also determined. The structure showed that the active‐site loops undergo a significant conformational change, which leads to the structural deformation of the substrate‐binding pocket. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号