首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of beta-lactam antibiotics into small intestinal enterocytes occurs by the transport system for small peptides. The role of membrane-bound peptidases in the brush border membrane of enterocytes from rabbit and pig small intestine for the uptake of small peptides and beta-lactam antibiotics was investigated using brush border membrane vesicles. The enzymatic activity of aminopeptidase N was inhibited by beta-lactam antibiotics in a non-competitive manner whereas dipeptidylpeptidase IV was not affected. The peptidase inhibitor bestatin led to a strong competitive inhibition of aminopeptidase N whereas the uptake of cephalexin into brush border membrane vesicles was only slightly inhibited at high bestatin concentrations (greater than 1 mM). Modification of brush border membrane vesicles with the histidine-modifying reagent diethyl pyrocarbonate led to a strong irreversible inhibition of cephalexin uptake whereas the activity of aminopeptidase N remained unchanged. A modification of serine residues with diisopropyl fluorophosphate completely inactivated dipeptidylpeptidase IV whereas the transport activity for cephalexin and the enzymatic activity of aminopeptidase N were not influenced. With polyclonal antibodies raised against aminopeptidase N from pig renal microsomes the aminopeptidase N from solubilized brush border membranes from pig small intestine could be completely precipitated; the binding protein for beta-lactam antibiotics and oligopeptides of apparent Mr 127,000 identified by direct photoaffinity labeling with [3H]benzylpenicillin showed no crossreactivity with the aminopeptidase N anti serum and was not precipitated by the anti serum. These results clearly demonstrate that peptidases of the brush border membrane like aminopeptidase N and dipeptidylpeptidase IV are not directly involved in the intestinal uptake process for small peptides and beta-lactam antibiotics and are not a constituent of this transport system. This suggests that a membrane protein of Mr 127,000 is (a part of) the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of small intestinal enterocytes.  相似文献   

2.
The subcellular localization of aminopeptidase N (previously called aminoendopeptidase) has been investigated. This enzyme was found to be partially released (30-40%) by osmotic shock or by converting Escherichia coli K10 cells to spheroplasts. However, in all other E. coli strains (K12, B/r, MRE 600, ML 308) tested, this enzyme is not released at all by these procedures and thus behaves like a cytoplasmic enzyme. The crypticity of aminopeptidase N is surprisingly low, 75-85% of the enzyme activity is directly assayable in intact cells of any E. coli strain. Various inhibitors of transport systems do not interfer with this assay. Aminopeptidase activity could also be assayed in spheroplasts, even when an insolubilized substrate was used, which suggests a surface location of this enzyme. As well, N-ethylmaleimide (0.4 mM), under conditions which do not allow penetration in the cytoplasm, caused 70% inhibition of aminopeptidase N. Binding of 125I-labeled antiaminopeptidase N antibody to spheroplasts (from K12 strain) was used to assay the orientation of aminopeptidase N in the membrane. This enzyme is exposed on the outer surface of the cytoplasmic membrane. Confirmation of this orientation was obtained by comparing the accessibility of aminopeptidase, alkaline phosphatase and beta-galactosidase to fluorescamine in intact cells. Only 16% of the total beta-galactosidase was labeled with this fluorescent reagent whereas 44-45% of the aminopeptidase N and 59% of the alkaline phosphatase were labeled. Electron microscopic visualization of insolubilized reaction products of aminopeptidase N within the cells showed that these products are located at the poles of the cells. Neither mutant cells which were devoid of aminopeptidase N activity nor parental strains with the enzyme activity inhibited with phenylmercuric chloride contained the characteristic black caps. Thus, it appears that the periplasm is enlarged at the poles of the cells and that the reaction product is mainly located in these places. Investigation of the type of interactions of aminopeptidase N with the plasma membrane only revealed that aminopeptidase N has mainly an electrostatic interaction with the outer surface, probably mediated by magnesium ion bridges. Additional interactions are involved since disruption of the integrity of the cytoplasmic membrane is required to totally release this enzyme.  相似文献   

3.
The mode of action of purified aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2 on a complex peptide mixture of a tryptic digest from bovine beta-casein was analyzed. The oligopeptides produced in the tryptic digest before and after aminopeptidase N treatment were identified by analysis of the N- and C-terminal amino acid sequences and amino acid compositions of the isolated peptides and by on-line liquid chromatography-mass spectrometry. Incubation of purified peptides with aminopeptidase N resulted in complete hydrolysis of many peptides, while others were only partially hydrolyzed or not hydrolyzed. The tryptic digest of beta-casein exhibits a strong bitter taste, which corresponds to the strong hydrophobicity of several peptides in the tryptic digest of beta-casein. The degradation of the "bitter" tryptic digest by aminopeptidase N resulted in a decrease of hydrophobic peptides and a drastic decrease of bitterness of the reaction mixture.  相似文献   

4.
The degradation of enkephalin and related peptides by highly purified dipeptidyl aminopeptidase III (EC 3.4.14.4) was studied. The enzyme releases the N-terminal dipeptide units from substrates greater in length than the tetrapeptide. The enzyme exhibits an optimum of pH 7.5, Km of 81 microM and Vmax of 0.043 mumole/min for Leu-enkephalin. Its activity was markedly stimulated by Co2+, with both the Km and Vmax being increased. Among the enkephalin-related peptides examined, des-Tyr1-Leu-enkephalin was the most rapidly hydrolyzed with Co2+, but only slight stimulation was observed with Co2+.  相似文献   

5.
Intact cells of Saccharomyces cerevisiae 139 hydrolyzed amino acid-p-nitroanilide by an activity similar to that of aminopeptidase II, as well-characterized external peptidase in yeast. In contrast, trimethionine, a model peptide used in transport assays, was not hydrolyzed by this aminopeptidase II-like activity, and the peptidase activity toward this substrate was localized in the soluble fraction of the yeast. We conclude that this tripeptide is taken up by S. cerevisiae intact and rapidly hydrolyzed inside the cell.  相似文献   

6.
Degradation of dermorphin, [D-Arg2]dermorphin and [D-Arg2, Gly3, Phe4]dermorphin in a soluble rat brain extract was examined. The former two heptapeptides were degraded in a similar fashion to produce corresponding N-terminal tetrapeptide as the main degradation product along with the parallel release of Tyr5, Pro6 and Ser7-NH2. Tyr-D-Arg-Phe-Gly showed a good enzymatic stability. When captopril, an angiotensin-converting enzyme inhibitor, was present in the incubation mixture, hydrolysis of the Gly4-Tyr5 bond was markedly suppressed and resulted in release of the corresponding N-terminal hexapeptide as the main degradation product. Combined use of captopril and amastatin, an aminopeptidase inhibitor, markedly suppressed the hydrolysis of these peptides. On the other hand, [D-Arg2, Gly3, Phe4]dermorphin was hydrolyzed easier than the other two heptapeptides and considerable amounts of Tyr1 and Phe4 were released after 20 hr incubation while the N-terminal tetrapeptide, Tyr-D-Arg-Gly-Phe, showed a good enzymatic stability. On the basis of these results, possible degradation pathways of these heptapeptides were discussed.  相似文献   

7.
From the soluble and membrane fractions of rat brain homogenate, two enzymes that liberate dipeptides of the type Xaa-Pro from chromogenic substrates were purified to homogeneity. The two isolated dipeptidyl peptidases had similar molecular and catalytic properties: For the native proteins, molecular weights of 110,000 were estimated; for the denatured proteins, the estimate was 52,500. Whereas the soluble peptidase yielded one band of pI 4.2 after analytical isoelectric focusing, two additional enzymatic active bands were detected between pI 4.2 and 4.3 for the membrane-associated form. As judged from identical patterns after neuraminidase treatment, both peptidases contained no sialic acid. A pH optimum of 5.5 was estimated for the hydrolysis of Gly-Pro- and Arg-Pro-nitroanilide. Substrates with alanine instead of proline in the penultimate position were hydrolyzed at comparable rates. Acidic amino acids in the ultimate N-terminal position of the substrates reduced the activities of the peptidases 100-fold as compared with corresponding substrates with unblocked neutral or, especially, basic termini. The action of the dipeptidyl peptidase on several peptides with N-terminal Xaa-Pro sequences was investigated. Tripeptides were rapidly hydrolyzed, but the activities considerably decreased with increasing chain length of the peptides. Although the tetrapeptide substance P 1-4 was still a good substrate, the activities detected for the sequential liberation of Xaa-Pro dipeptides from substance P itself or casomorphin were considerably lower. Longer peptides were not cleaved. The peptidases hydrolyzed Pro-Pro bonds, e.g., in bradykinin 1-3 or 1-5 fragments, but bradykinin itself was resistant. The enzymes were inhibited by serine protease inhibitors, like diisopropyl fluorophosphate or phenylmethylsulfonyl fluoride, and by high salt concentrations but not by the aminopeptidase inhibitors bacitracin and bestatin. Based on the molecular and catalytic properties, both enzymes can be classified as species of dipeptidyl peptidase II (EC 3.4.14.2) rather than IV (EC 3.4.14.5). However, some catalytic properties differentiate the brain enzyme from forms of dipeptidyl peptidase II of other sources.  相似文献   

8.
The transcellular transport of oligopeptides across intestinal epithelial cells has attracted considerable interest in investigations into how biologically active peptides express diverse physiological functions in the body. It has been postulated that the tripeptide, Gly-Pro-Hyp, which is frequently found in collagen sequences, exhibits bioactivity. However, the mechanism of uptake of dietary di- and tripeptides by intestinal epithelial cells is not well understood. In this study, we used porcine brush-border membrane (BBM) vesicles to assess Gly-Pro-Hyp uptake, because these vesicles can structurally and functionally mimic in vivo conditions of human intestinal apical membranes. The present study demonstrated the time-dependent degradation of this tripeptide into the free-form Gly and a dipeptide, Pro-Hyp, on the apical side of the BBM vesicles. In parallel with the hydrolysis of the tripeptide, the dipeptide Pro-Hyp was identified in the BBM intravesicular space environment. We found that the transcellular transport of Pro-Hyp across the BBM was inhibited by the addition of a competitive substrate (Gly-Pro) for peptide transporter (PEPT1) and was pH-dependent. These results indicate that Gly-Pro-Hyp can be partially hydrolyzed by the brush-border membrane-bound aminopeptidase N to remove Gly, and that the resulting Pro-Hyp is, in part, transported into the small intestinal epithelial cells via the H+-coupled PEPT1. Gly-Pro-Hyp cannot cross the epithelial apical membrane in an intact form, and Pro-Hyp is highly resistant to hydrolysis by intestinal mucosal apical proteases.  相似文献   

9.
The mode of action towards oligopeptides and proteins of hydrolase H purified from rabbit skeletal muscle was studied. The presence of protamine or alpha-N-benzoylarginine p-nitroanilide (an endopeptidase substrate) changed both the Km and V values of the enzyme towards Leu-beta-naphthylamide (an aminopeptidase substrate). This indicates that the binding site for an endopeptidase substrate is different from that for an aminopeptidase substrate. Hydrolase H as an aminopeptidase displayed broad specificity. The enzyme hydrolyzed various dipeptides readily except the dipeptides containing Pro or an amino acid with a hydrophobic beta-branched chain at the NH2 terminus. Pro and Val at the NH2 terminus of tripeptides were also difficult to release, whereas Ile and Val of tetrapeptides were easily released in contrast with those of dipeptides. The longer the peptide chain of Glyn (n = 2, 3, 4), the more susceptible was it to hydrolase H. Hydrolase H behaved as an endopeptidase only towards protamine among the proteins tested. The other proteins, casein, bovine serum albumin, myofibrils, troponin, hemoglobin, sarcoplasmic proteins, and myoglobin were probably attacked only by the aminopeptidase activity of the enzyme.  相似文献   

10.
The substrate specificity of a serum enzyme which degrades thyroliberin (less than Glu-His-Pro-NH2) into pyroglutamic acid and His-Pro-NH2 has been investigated and compared with that of the pyroglutamyl aminopeptidase from calf liver. The latter enzyme has a broad specificity, causing rapid degradation of thyroliberin, pyroglutamyl beta-naphthylamide and luliberin. In contrast, the serum enzyme causes rapid stereospecific cleavage only of the pyroglutamyl-histidine bond of thyroliberin and closely related peptides. Compounds such as less than Glu-Ala, less than Glu-His and pyroglutamyl beta-naphthylamide, which are known substrates of the pyroglutamyl aminopeptidases (such as the liver enzyme), are not substrates of the serum enzyme, and inhibit it only poorly. Pyroglutamyl-containing peptides such as luliberin and neurotensin and thyroliberin analogues such as LLD-thyroliberin, less than Glu-His-Pro-NHCH3, less than Glu-His-Pro-Gly-NH2 and less than Glu-Phe-Pro-NH2 inhibit effectively the degradation of thyroliberin by the serum enzyme, but are not hydrolyzed by this enzyme. The high specificity of the serum enzyme implies a physiological function.  相似文献   

11.
To investigate the possible role of aminopeptidase N (alpha-aminoacyl-peptide hydrolase (microsomal), EC 3.4.11.2) in the transport of amino acids from oligopeptides, the modified amino acids Phe(N3) and Phe(N3, I) and the tetrapeptides Phe(N3) or Phe(N3, I)-L-or-DAla-Gly-Gly have been synthesized. The azido-amino acids were radioactively labeled by tritium or 125I before their coupling with the tripeptides. Their utilization as photoaffinity labels for aminopeptidase N has been studied. The modification imposed at the N-terminal residue of the tetrapeptides has not impaired their hydrolysis by porcine aminopeptidase N (same kinetic parameters as unmodified peptides). In addition, evidence is presented for a specific and reversible interaction in the dark of the azido-derivatives at the substrate recognition site of the enzyme. Upon photolysis, irreversible inactivation of aminopeptidase N and covalent attachment of Phe(N3, I) have been demonstrated. Soluble and membrane-bound aminopeptidases are both labeled to the same extent indicating that the free azido-amino acid preferentially reacts with the external part of the enzyme. Although the linkage of the azido-derivative is not strictly restricted to the region of the active site, the values obtained strongly suggest that 1 mol probe has been covalently attached per mol monomer of inhibited aminopeptidase.  相似文献   

12.
A pyroglutamate aminopeptidase activity, distinct from that of cytoplasm, was released from a synaptosomal membrane preparation of guinea-pig brain by papain treatment. This activity was further purified 3560-fold relative to the homogenate with a yield of 17% by a procedure involving gel filtration chromatography, calcium phosphate cellulose chromatography and hydrophobic interaction chromatography on phenyl-Sepharose CL-4B. The purified synaptosomal pyroglutamate aminopeptidase hydrolysed only thyroliberin, acid-thyroliberin, the luliberin N-terminal tripeptide (Glp-His-Trp) and, only slightly, Glp-His-Gly. No hydrolysis was observed with dipeptides containing N-terminal pyroglutamic acid (Glp) or with pyroglutamyl peptides containing more than three amino acids. A Km value of 40 microM was recorded when thyroliberin was used as substrate; however, luliberin was found to inhibit the hydrolysis of thyroliberin competitively with a Ki value of 20 microM.  相似文献   

13.
The release of plasma-membrane-bound enzymes by phosphatidylinositol-specific phospholipase C obtained from Bacillus thuringiensis was investigated. Among the ectoenzymes of plasma membrane tested, alkaline phosphodiesterase I was released markedly from rat kidney cortex slices, in addition to alkaline phosphatase and 5'-nucleotidase. Other membrane-bound enzymes; alanine aminopeptidase, leucine aminopeptidase, dipeptidyl peptidase, leucine aminopeptidase, dipeptidyl peptidase IV, esterase and gamma-glutamyl transpeptidase could not be liberated from the treated slices. Alkaline phosphodiesterase I was released linearly from rat kidney slices with the concentration of phosphatidylinositol-specific phospholipase C, but little enzyme was released from rat liver slices. Alkaline phosphodiesterase I separated from kidney tissue with n-butanol still retained phosphatidylinositol and was transformed into a lower molecular weight form by phosphatidylinositol-specific phospholipase C. This suggests an important function for phosphatidylinositol in the binding of alkaline phosphodiesterase I to the plasma membrane of rat kidney cells. The alkaline phosphodiesterase I released from rat kidney had a molecular weight of about 240,000 and an isoelectric point (pI) of 5.4. The enzyme hydrolyzed the phosphodiester linkage of p-nitrophenyl-thymidine 5'-monophosphate at pH 8.9 and had a Km value of 0.3 mM. The enzyme was activated by Mg2+ and Ca2+, but was inhibited by EDTA. Strong inhibition took place on the addition of adenosine 5'-phosphosulfate or the nucleotide pyrophosphates, i.e., UDP-galactose and alpha, beta-methylene ATP.  相似文献   

14.
The post-translational processing of pig small-intestinal aminopeptidase N (EC 3.4.11.2) was studied in organ-cultured mucosal explants. Exposure of the explants to swainsonine, an inhibitor of Golgi mannosidase II, resulted in the formation of a Mr-160000 polypeptide, still sensitive to endo-beta-N-acetylglucosaminidase H. Swainsonine caused only a moderate inhibition of transport of the enzyme through the Golgi complex and the subsequent expression in the microvillar membrane. This may imply that the trimming of the high-mannose core and complex glycosylation of N-linked oligosaccharides is not essential for the transport of aminopeptidase N to its final destination. A different type of processing was observed to take place in the presence of swainsonine, resulting in a considerable increase in apparent Mr (from 140000 to 160000). This processing could not be ascribed to N-linked glycosylation, since treatment of the Mr-160000 polypeptide with endo-beta-N-acetylglucosaminidase H only decreased its apparent Mr by 15000. The susceptibility of the mature Mr-166000 polypeptide, but not the Mr-140000 polypeptide, to mild alkaline hydrolysis suggests that aminopeptidase N becomes glycosylated with O-linked oligosaccharides during its passage through the Golgi complex. Aminopeptidase N was not labelled by [3H]palmitic acid, indicating that the processing of the enzyme does not include acylation.  相似文献   

15.
Effect of divalent cations bound to the phosphoenzyme intermediate of the ATPase of sarcoplasmic reticulum was investigated at 0 degree C and pH 7.0 using the purified ATPase preparations. Our previous study (Shigekawa, M., Wakabayashi, S., and Nakamura, H. (1983) J. Biol. Chem. 258, 14157-14161) indicated that 1 mol of the ADP-sensitive phosphoenzyme (E1P) formed from CaATP has 3 mol of high affinity binding sites for Ca2+, of which two are transport sites for calcium while the remainder is the acceptor site for calcium derived from the substrate, CaATP ("substrate site"). When incubated with a chelator of divalent cation, E1P formed from CaATP released all of its bound calcium to form a divalent cation-free phosphoenzyme. Evidence was presented that calcium dissociation from the substrate site was faster than that from the transport sites and primarily responsible for the ADP sensitivity loss of E1P induced by the chelator. Divalent cation-free phosphoenzyme was kinetically stable but when treated with divalent cations, it behaved similarly to the ADP-insensitive phosphoenzyme (E2P) which is the normal reaction intermediate of ATP hydrolysis. 45Ca bound at the substrate site on E1P formed from 45CaATP exchanged readily with nonradioactive ionized Ca2+ in the reaction medium whereas 45Ca at the transport sites on E1P was displaced only at a very slow rate which was almost the same as that for the phosphoenzyme hydrolysis. It was suggested that calcium at the transport sites on E1P formed from CaATP is released only after the rate-limiting conformational transition of the phosphoenzyme from E1P to E2P and that removal of calcium by a chelator from the substrate site facilitates this conformational transition, thereby allowing calcium bound at the transport sites to be released readily from the phosphoenzyme.  相似文献   

16.
A novel aminopeptidase from Clostridium histolyticum   总被引:1,自引:0,他引:1  
An aminopeptidase was found in the culture filtrate of Cl. histolyticum and purified to homogeneity (130 times) in a two-step procedure. All types of N-terminal amino acids, including proline and hydroxyproline are cleaved by the enzyme from small peptides and from polypeptides. A low rate of hydrolysis was observed for β-naphthylamides and for alanine amide; p-nitroanilides were not hydrolyzed. Kinetic parameters (Km and Vmax) for several tripeptides and the tetrapeptide Pro-Gly-Pro-Pro were determined. The enzyme has a pH optimum at 8.6. The presence of either Mn++ or Co++ is essential for its activity. Only slight activation was observed with Ni++ and Cd++, while Zn++ and Cu++ were inhibitory. The molecular weight of the native enzyme is about 340,000, and a molecular weight of about 60,000 was determined for the reduced and denatured enzyme by gel electrophoresis in sodium dodecyl sulfate (SDS).The culture filtrate of Cl. histolyticum has been shown to contain various proteolytic enzymes, in addition to collagenase1–5. In a search for enzymes acting on proline-rich peptides, we tested the crude filtrate with (Pro-Gly-Pro)n, (Pro-Gly-Pro)n-OMe, α,DNP-(Pro-Gly-Pro)n and poly-L-proline as substrates. Proline was formed only from (Pro-Gly-Pro)n and its methyl ester. This showed the presence in Cl. histolyticum filtrate of an aminopeptidase which cleaves N-terminal proline from polypeptides but not from polyproline. The purification and some of the properties of this clostridial aminopeptidase (CAP) are described in this communication.  相似文献   

17.
Degradation products of the N-terminal tetrapeptide of dermorphin, H-Tyr-D-Ala-Phe-Gly-OH (ALPG) and D-Arg2-substituted tetrapeptide analogs of dermorphin, H-Tyr-D-Arg-Phe-Gly-OH (ARPG), H-Tyr-D-Arg-Phe-Gly-NH2 (TDAPG-NH2) and H-Tyr-D-Arg-Phe-beta-Ala-OH (TDAPA) by enkephalin degrading enzymes were studied by using reversed-phase high-performance liquid chromatography. After 5 and 25 hr incubations of the peptides with solubilized enzymes of mouse brain or spinal cord, liberation of the appreciable Tyr1 residue was observed in ALPG but not in ARPG, TDAPG-NH2 and TDAPA. When ARPG and TDAPG-NH2 were incubated with enzymes for 25 hr, a main degradation product was the N-terminal tripeptide produced from the hydrolysis of Phe3-Gly4 bond. Conversely, TDAPA did not produce the N-terminal tripeptide after 25 hr incubation with enzymes. In the enzyme assay, Tyr1-D-Arg2 bond of ARPG, TDAPG-NH2 and TDAPA was more stable than that of ALPG to the cleavage by aminopeptidase M (AP-M). Phe3-Gly4 bond of ALPG, ARPG and TDAPG-NH2 were easily hydrolyzed by carboxypeptidase Y (CP-Y) within 3 hr incubation, whereas the hydrolysis of Phe3-beta-Ala4 bond of TDAPA by CP-Y was not observed after 3 hr incubation. The present results and previous behavioural data suggest that a potent and prolonged antinociceptive activity of the D-Arg-substituted tetrapeptides is mainly attributed to the stability of Tyr1-D-Arg2 bond against aminopeptidase of peptidases.  相似文献   

18.
1. Intact cells of Saccharomyces cerevisiae catalyze the hydrolysis of various aminopeptidase substrates. This activity is not due to permeation of substrates and products but exerted by an external enzyme. 2. From its substrate specificity and the effects of pH and inhibitors the enzyme was identified as aminopeptidase II. 3. About 40% of total aminopeptidase II activity is detectable with untreated exponentially growing cells. Up to two thirds of the external enzyme is released into the medium during enzymic digestion of the cell wall, while little enzyme is liberated by osmotic shock. Membrane preparations contained only small amounts of aminopeptidase II; thus, the localization of the external enzyme appears to be similar to that of the so-called 'periplasmic' yeast hydrolases. 4. By cytochemical methods the presence of aminopeptidase II in the cell envelope was visualized. 5. In contrast to aminopeptidase II, yeast dipeptidase is an entirely intracellular enzyme.  相似文献   

19.
The degradation of cellular proteins by proteasomes generates peptides 2-24 residues long, which are hydrolyzed rapidly to amino acids. To define the final steps in this pathway and the responsible peptidases, we fractionated by size the peptides generated by proteasomes from beta-[14C]casein and studied in HeLa cell extracts the degradation of the 9-17 residue fraction and also of synthetic deca- and dodecapeptide libraries, because peptides of this size serve as precursors to MHC class I antigenic peptides. Their hydrolysis was followed by measuring the generation of smaller peptides or of new amino groups using fluorescamine. The 14C-labeled peptides released by 20 S proteasomes could not be degraded further by proteasomes. However, their degradation in the extracts and that of the peptide libraries was completely blocked by o-phenanthroline and thus required metallopeptidases. One such endopeptidase, thimet oligopeptidase (TOP), which was recently shown to degrade many antigenic precursors in the cytosol, was found to play a major role in degrading proteasome products. Inhibition or immunodepletion of TOP decreased their degradation and that of the peptide libraries by 30-50%. Pure TOP failed to degrade proteasome products 18-24 residues long but degraded the 9-17 residue fraction to peptides of 6-9 residues. When aminopeptidases in the cell extract were inhibited with bestatin, the 9-17 residue proteasome products were also converted to peptides of 6-9 residues, instead of smaller products. Accordingly, the cytosolic aminopeptidase, leucine aminopeptidase, could not degrade the 9-17 residue fraction but hydrolyzed the peptides generated by TOP to smaller products, recapitulating the process in cell extracts. Inactivation of both TOP and aminopeptidases blocked the degradation of proteasome products and peptide libraries nearly completely. Thus, degradation of most 9-17 residue proteasome products is initiated by endoproteolytic cleavages, primarily by TOP, and the resulting 6-9 residue fragments are further digested to amino acids by aminopeptidases.  相似文献   

20.
Incubation of membranes of neuroblastoma x glioma hybrid, NG108-15 cells with GDP beta S followed by immunoblotting of resolved membrane and supernatant fractions with specific anti-peptide antisera showed essentially all of the alpha subunit of Go to be associated with the membrane. Similar experiments with poorly hydrolyzed analogues of GTP caused release of a significant fraction (some 50% within 60 minutes) of Go alpha into the supernatant. This was not mimicked by analogues of ATP. Antisera directed against peptides corresponding to the extreme N and C-termini of GO alpha demonstrated that the released polypeptide was not proteolytically clipped. These experiments show that the alpha subunit of GO need not be invariably bound to the plasma membrane and that guanine nucleotide activation can release the alpha subunit of GO from its site of membrane attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号