首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fluorescence and radiolabel study of sterol exchange between membranes   总被引:2,自引:0,他引:2  
The fluorescent sterols delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) and delta 5,7,9,(11)-cholestatrien-3 beta-ol (cholestatrienol) as well as [1,2-3H]cholesterol were utilized as cholesterol analogues to examine spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Exchange of fluorescent sterols was monitored at 24 degrees C by release from self-quenching of polarization from the time of mixing without separation of donor and acceptor vesicles. The polarization curve for 35 mol% sterol in POPC best fitted a two-exponential function, with a fast-exchange rate constant k1 = 0.0217 min-1, 1t1/2 = 32 min, size pool 1 = 12%, and a slow rate constant k2 = 2.91.10(-3) min-1, 2t1/2 = 238 min, size pool 2 = 88%. In addition to the above two exchangeable pools of sterol, the data were consistent with the presence of a slowly or nonexchangeable pool, 42% of total sterol, that was highly dependent on sterol content. These results were confirmed by simultaneous monitoring of [1,2-3H]cholesterol radioactivity and dehydroergosterol fluorescence intensity after separation of donor and acceptor vesicles by ion-exchange column chromatography. Thus, dehydroergosterol or cholestatrienol exchange as measured by fluorescence parameters (polarization and/or intensity) provides two new methods to follow cholesterol spontaneous exchange. These methods allow resolution and quantitation of a shorter exchange t1/2 near 30 min previously not reported. Thus, the cholesterol desorption rate from membranes may be faster than previously believed. In addition, the presence of a slowly non-exchangeable pool was confirmed.  相似文献   

2.
G Nemecz  F Schroeder 《Biochemistry》1988,27(20):7740-7749
The fluorescent sterol delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was investigated as a cholesterol analogue to examine sterol domains in and spontaneous exchange of sterol between 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV). Fluorescence lifetime, acrylamide quenching analyses, and intermembrane exchange kinetics were consistent with the presence of at least two sterol domains in POPC. Fluorescence lifetime was determined by phase and modulation fluorescence spectroscopy and analyzed by nonlinear least-squares as well as continuous distributional analyses. Both methods demonstrated that pure dehydroergosterol in POPC SUV had two lifetime components (C) and fractional intensities (F) near C1 = 0.851 ns (F1 0.96) and C2 = 2.668 ns (F2 0.004). In contrast to component C1, the center of lifetime distribution, fractional intensity, and peak width of dehydroergosterol lifetime component C2 was dependent on the polarity of the medium and vesicle curvature. The sterol domain corresponding to dehydroergosterol component C2 was preferentially quenched by acrylamide. Acrylamide quenching of dehydroergosterol fluorescence demonstrated that the two lifetime components of dehydroergosterol were not due to transbilayer sterol domains with different lifetimes. In a spontaneous exchange assay not requiring separation of donor and acceptor SUV, the lifetime component C2, but not C1, shifted to a shorter lifetime with altered distributional width. The kinetics of these lifetime and distributional width changes best fitted a two-exponential function, with a fast exchange rate constant K1 = 0.0325 min-1, t1/2 = 21.3 min, and a slow rate constant k2 = 0.00275 min-1, t1/2 = 261 min. The fast exchanging pool correlates with the longer lifetime component C2. These kinetics were confirmed both by dehydroergosterol exchange measured with fluorescence intensity and by [3H]cholesterol exchange. In summary, lifetime, distributional width, acrylamide quenching, and classical exchange assay data are consistent with the presence of at least two pools of sterol in POPC SUV.  相似文献   

3.
The fluorescent sterol delta 5,7,9(11)-dehydroergostatetraen-3 beta-ol (dehydroergosterol) was used as an analogue of cholesterol to examine the molecular interaction of purified rat liver sterol carrier protein-2 (SCP-2) with sterol. The binding of dehydroergosterol to SCP-2 was evidenced by light scatter and by fluorescence polarization, lifetime, limiting anisotropy, and rotational relaxation time of dehydroergosterol. In addition, energy transfer efficiency from SCP-2 tryptophan to dehydroergosterol was 96%, indicating that the apparent distance, R, between the SCP-2 tryptophan (energy donor) and the dehydroergosterol (energy acceptor) was 13.7 A. Scatchard binding analysis of light scatter, lifetime, and energy transfer data all indicated a 1:1 molar stoichiometry with Kd = 1.2, 1.6, and 1.3 microM, respectively. SCP-2 enhanced the activity of microsomal acyl-CoA:cholesterol acyltransferase through transfer of [3H]cholesterol from donor palmitoyloleoyl phosphatidylcholine/cholesterol small unilamellar vesicles to rat liver microsomes containing the enzyme. A recently developed fluorescence assay utilizing dehydroergosterol fluorescence polarization (Nemecz, G., Fontaine, R. N., and Schroeder, F. (1988) Biochim. Biophys. Acta 948, 511-521; Nemecz, G., and Schroeder, F. (1988) Biochemistry 27, 7740-7749) was applied to examine the effect of SCP-2 on sterol exchange. In the absence of SCP-2, two spontaneously exchangeable sterol domains were observed in palmitoyloleoyl phosphatidylcholine/sterol (65:35 molar ratio) small unilamellar vesicles. SCP-2 enhanced the rate of exchange of the faster exchanging domain 2-fold. The transfer rate of the more slowly exchangeable sterol domain and the fraction of cholesterol represented by each domain were not affected. These results demonstrate the utility of dehydroergosterol to probe SCP-2 interactions with sterols and are indicative of a physiological role for SCP-2 as a soluble sterol carrier.  相似文献   

4.
F Schroeder  G Nemecz 《Biochemistry》1989,28(14):5992-6000
The fluorescent sterol dehydroergosterol was used as a cholesterol analogue in conjunction with multifrequency phase and modulation (1-250 MHz) fluorometry to examine whether sterols (1) interact preferentially with fluid- or solid-phase phospholipids and (2) interact preferentially with sphingomyelin in phase-separated or phase-miscible cosonicated phospholipid membranes. Cosonicated small unilamellar vesicles (SUV) were produced by mixing lipids in organic solvents, drying the mixture, adding buffer, sonicating, and separating SUV. Phospholipids of synthetic as well as biological origin were utilized. In phase-separated, cosonicated SUV of dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC, 1:1 molar ratio), the fluorescent sterol (0.5 mol %) interacted preferentially with the fluid-phase lipid (partition coefficient, Kf/s = 2.6-3.4) according to four criteria. First, dehydroergosterol detected only the phase transition of DMPC, the phospholipid with the lower phase transition temperature. Second, the dehydroergosterol fluorescence polarization, limiting anisotropy, order parameter, and rotational relaxation time in the cosonicated vesicle were similar to those of dehydroergosterol in SUV composed only of DMPC. Third, the number of dehydroergosterol fluorescence lifetime components as well as the distribution in the cosonicated SUV was similar to that of dehydroergosterol in SUV composed of DMPC. Fourth, dehydroergosterol concentration-dependent self-quenching was detected in DSPC SUV at much lower dehydroergosterol concentration than in DMPC SUV. Preference of dehydroergosterol for fluid-phase lipids was also observed by monitoring dehydroergosterol exchange between individually sonicated DMPC SUV and DSPC SUV after the two types of vesicles were mixed in equal proportions. In these SUV mixtures, the dehydroergosterol also partitioned into the more fluid SUV, 99:1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A liposomal membrane model system was developed to examine the mechanism of spontaneous and protein-mediated intermembrane cholesterol transfer. Rat liver sterol carrier protein 2 (SCP2) and fatty acid binding protein (FABP, also called sterol carrier protein) both bind sterol. However, only SCP2 mediates sterol transfer. The exchange of sterol between small unilamellar vesicles (SUV) containing 35 mol % sterol was monitored with a recently developed assay [Nemecz, G., Fontaine, R. N., & Schroeder, F. (1988) Biochim. Biophys. Acta 943, 511-541], modified to continuous polarization measurement and not requiring separation of donor and acceptor membrane vesicles. As compared to spontaneous sterol exchange, 1.5 microM rat liver SCP2 enhanced the initial rate of sterol exchange between neutral zwwitterionic phosphatidylcholine SUV 2.3-fold. More important, the presence of acidic phospholipids (2.5-30 mol %) stimulated the SCP2-mediated increase in sterol transfer approximately 35-42-fold. Thus, acidic phospholipids strikingly potentiate the effect of SCP2 by 15-18 times as compared to SUV without negatively charged lipids. Rat liver FABP (up to 60 microM) was without effect on sterol transfer in either neutral zwitterionic or anionic phospholipid containing SUV. The potentiation of SCP2 action by acidic phospholipids was suppressed by high ionic strength, neomycin, and low pH. The results suggest that electrostatic interaction between SCP2 and negatively charged membranes may play an important role in the mechanism whereby SCP2 enhances intermembrane cholesterol transfer.  相似文献   

6.
The kinetics and mechanism of transfer of 14C-labeled human apolipoproteins A-I, A-II and C-III1 between small unilamellar vesicles (SUV) have been investigated. Ion exchange chromatography was used for rapid separation of negatively charged egg phosphatidylcholine (PC)/dicetyl phosphate donor SUV containing bound 14C-labeled apoprotein from neutral egg PC acceptor SUV present in 10-fold molar excess. The transfer kinetics of these apolipoproteins at 37 degrees C are consistent with the existence of fast, slow and apparently 'nontransferrable' pools of SUV-associated lipoprotein: the transfers from these pools occur on timescales of seconds (or less), minutes/hours and days/weeks, respectively. For donor SUV containing about 15 apoprotein molecules per vesicle and at a donor SUV concentration of 0.15 mg phospholipid/ml incubation mixture, the sizes of the fast kinetic pools for apolipoproteins A-I, A-II and C-III1 associated with donor SUV are 2, 10 and 11%, respectively. The sizes of the slow kinetic pools for these apolipoproteins are 16, 71 and 50%, respectively. The transfer of the various apolipoproteins from the slow kinetic pool follows first order kinetics and the half-time (t1/2) values are in the order: apo C-III1 less than apo A-I. Increasing the number of apoprotein molecules per donor SUV enlarges the size of the fast pool and increases the t1/2 of slow transfer. The differences in the kinetics of apolipoprotein transfer between SUV are consequences of the variations in the primary and secondary structures of the apolipoprotein molecules. The slow transfer of apoprotein molecules is mediated by collisions between donor and acceptor SUV; the rate is dependent on the apoprotein molecular weight with larger molecules transferring more slowly from donor SUV containing the same lipid/protein molar ratio. The hydrophobicity of the apoprotein molecule is also significant with less hydrophobic molecules transferring more rapidly. Further understanding of the differences in the kinetics of transfer of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

7.
The fluorescent sterol delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was incorporated into 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) small unilamellar vesicles (SUV) with and without cholesterol in order to monitor sterol-sterol interactions in model membranes. In the range 0-5 mol % fluorescent sterol, dehydroergosterol underwent a concentration-dependent relaxation characterized by red-shifted wavelengths of maximum absorption as well as altered ratios of absorbance maxima and fluorescence excitation maxima at 338 nm/324 nm. Fluorescence intensity per mole of dehydroergosterol increased up to 5 mol % in POPC vesicles. In contrast, quantum yield, steady-state anisotropy, limiting anisotropy, lifetime, and rotational rate remained relatively constant in this concentration range. Similarly, addition of increasing cholesterol in the range 0-5 mol % in the presence of 3 mol % dehydroergosterol also increased the fluorescence intensity per mole of dehydroergosterol, red-shifted wavelengths of maximum absorption, and altered ratios of absorbance maxima. In POPC vesicles containing between 5 and 33 mol % dehydroergosterol, the fluorescent dehydroergosterol interacted to self-quench, thereby decreasing the fluorescence intensity, quantum yield, steady-state anisotropy, and limiting anisotropy and increasing the rotational rate (decreased rotational relaxation time) of the fluorescent sterol. The fluorescence lifetime of dehydroergosterol remained unchanged. The results were in accord with the interpretation that below 5 mol% sterol, the sterols behaved as monomers exposed to some degree to the aqueous solvent in POPC bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Mitochondrial cholesterol oxidation rapidly depletes cholesterol from the relatively cholesterol-poor mitochondrial membranes. However, almost nothing is known regarding potential mechanism(s) whereby the mitochondrial cholesterol pool is restored. Since most exogenous cholesterol enters the cell via the lysosomal pathway, this could be a source of mitochondrial cholesterol. In the present study, an in vitro fluorescent sterol transfer assay was used to examine whether the lysosomal membrane could be a putative cholesterol donor to mitochondria. First, it was shown that spontaneous sterol transfer from lysosomal to mitochondrial membranes was very slow (initial rate, 0.316 +/- 0.032 pmol/min). This was due, in part, to the fact that 90% of the lysosomal membrane sterol was not exchangeable, while the remaining 10% also had a relatively long half-time of exchange t(1/2) = 202 +/- 19 min. Second, the intracellular sterol carrier protein-2 (SCP-2) and its precursor (pro-SCP-2) increased the initial rate of sterol transfer from the lysosomal to mitochondrial membrane by 5.2- and 2.0-fold, respectively, but not in the reverse direction. The enhanced sterol transfer was due to a 3.5-fold increase in exchangeable sterol pool size and to induction of a very rapidly (t(1/2) = 4.1 +/- 0.6 min) exchangeable sterol pool. Confocal fluorescence imaging and indirect immunocytochemistry colocalized significant amounts of SCP-2 with the mitochondrial marker enzyme cytochrome oxidase in transfected L-cells overexpressing SCP-2. In summary, SCP-2 and pro-SCP-2 both stimulated molecular sterol transfer from lysosomal to mitochondrial membranes, suggesting a potential mechanism for replenishing mitochondrial cholesterol pools depleted by cholesterol oxidation.  相似文献   

9.
The fluorescent sterol analogue delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was synthesized and purified by reverse-phase high-performance liquid chromatography. Dehydroergosterol in aqueous solution had a critical micelle concentration of 25 nM and a maximum solubility of 1.3 microM as ascertained from fluorescence polarization and light scattering properties, respectively. Several lines of evidence indicated a close molecular interaction of dehydroergosterol with purified rat liver squalene and sterol carrier protein (SCP). SCP increased the maximal solubility of dehydroergosterol in aqueous buffer. The fluorescence emission spectrum of dehydroergosterol was blue shifted upon addition of SCP. The fluorescence lifetime of dehydroergosterol in aqueous buffer was 2.3 ns; addition of SCP resulted in the appearance of a second lifetime component near 12.4 ns. The SCP increased the fluorescence polarization of monomeric dehydroergosterol in aqueous buffer from 0.033 to 0.086. Scatchard analysis of the binding data indicated that dehydroergosterol interacted with purified rat liver SCP with an apparent KD = 0.88 microM and Bmax = 4.8 microM. At maximal binding, 1.0 mol of dehydroergosterol was specifically bound per mole of SCP. The close molecular interaction of dehydroergosterol with SCP was also demonstrated by energy-transfer experiments. The intermolecular distance between SCP and bound dehydroergosterol was evaluated by fluorescence energy transfer from tyrosine residues of SCP to the conjugated triene series of double bonds in dehydroergosterol. The transfer efficiency was 36%, and R, the apparent distance between the tyrosine energy donor and the dehydroergosterol energy acceptor, was 19 A. The significance of these data obtained in vitro for dehydroergosterol interaction with SCP was also tested in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The transfer of 14C-labeled, reduced and carboxymethylated human apolipoprotein A-II (RCM-AII) between small unilamellar vesicles (SUV) has been investigated. Ion-exchange chromatography was used for rapid separation of negatively charged egg phosphatidylcholine (PC)/dicetyl phosphate donor SUV containing bound 14C-labeled RCM-AII from neutral egg PC acceptor SUV present in 10-fold molar excess. The kinetics of 14C-labeled RCM-AII transfer in incubations of up to 12 h at 37 degrees C are consistent with the existence of fast, slow, and apparently "nontransferrable" pools of SUV-associated apolipoprotein; the transfers from these pools occur on the time scales of seconds or less, hours, and days/weeks, respectively. For donor SUV (0.15 mg of phospholipid/mL reaction mixture) containing about 15 RCM-AII molecules per vesicle, the sizes of the fast, slow, and nontransferrable pools are 13, 69, and 18%, respectively. The transfer of RCM-AII from the slow kinetic pool follows first-order kinetics, and the half-time (t 1/2) is about 3 h. The different kinetic pools of SUV-associated RCM-AII probably reflect apoprotein in different conformations of the SUV surface. Increasing the number of RCM-AII per donor SUV enlarges the size of the fast pool and increases the t 1/2 of transfer from the slow pool. In contrast, raising the incubation temperature reduces the t 1/2 of slow transfer. The t 1/2 of RCM-AII transfer from the slow kinetic pool is inversely proportional to the acceptor/donor SUV ratio which suggests that the transfer of apoprotein molecules in this kinetic pool is mediated by SUV collisions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

12.
McCauliff LA  Xu Z  Storch J 《Biochemistry》2011,50(34):7341-7349
Niemann--Pick C disease is an inherited disorder in which cholesterol and other lipids accumulate in the late endosomal/lysosomal compartment. Recently, cyclodextrins (CD) have been shown to reduce symptoms and extend lifespan in animal models of the disease. In the present studies we examined the mechanism of sterol transport by CD using in vitro model systems and fluorescence spectroscopy and NPC2-deficient fibroblasts. We demonstrate that cholesterol transport from the lysosomal cholesterol-binding protein NPC2 to CD occurs via aqueous diffusional transfer and is very slow; the rate-limiting step appears to be dissociation of cholesterol from NPC2, suggesting that specific interactions between NPC2 and CD do not occur. In contrast, the transfer rate of the fluorescent cholesterol analogue dehydroergosterol (DHE) from CD to phospholipid membranes is very rapid and is directly proportional to the acceptor membrane concentration, as is DHE transfer from membranes to CD. Moreover, CD dramatically increases the rate of sterol transfer between membranes, with rates that can approach those mediated by NPC2. The results suggest that sterol transfer from CD to membranes occurs by a collisional transfer mechanism involving direct interaction of CD with membranes, similar to that shown previously for NPC2. For CD, however, absolute rates are slower compared to NPC2 for a given concentration, and the lysosomal phospholipid lysobisphosphatidic acid (LBPA) does not stimulate rates of sterol transfer between membranes and CD. As expected from the apparent absence of interaction between CD and NPC2, the addition of CD to NPC2-deficient fibroblasts rapidly rescued the cholesterol accumulation phenotype. Thus, the recent observations of CD efficacy in mouse models of NPC disease are likely the result of CD enhancement of cholesterol transport between membranes, with rapid sterol transfer occurring during CD--membrane interactions.  相似文献   

13.
Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterol-containing phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, using fluorescence polarization of a mixture of donor and acceptor phospholipid vesicles, prepared in the presence of different sterols. Therefore, the micelles method can be useful to screen proteins for their sterol carrier activity. Secondly, elicitins are shown to trap sterols from purified plant plasma membranes and to transfer sterols from micelles to these biological membranes. This property should contribute to understand the molecular mechanism involved in sterol uptake by Phytophthora. It opens new perspectives concerning the role of such proteins in plant-microorganism interactions.  相似文献   

14.
Selective binding of cholesterol by recombinant fatty acid binding proteins   总被引:3,自引:0,他引:3  
The sterol binding specificity of rat recombinant liver fatty acid binding protein (L-FABP) and intestinal fatty acid binding protein (I-FABP) was characterized with [3H]cholesterol and a fluorescent sterol analog dehydroergosterol. Ligand binding analysis, fluorescence spectroscopy, and activation of microsomal acyl-CoA:cholesterol acyltransferase activity showed that L-FABP-bound sterols. 1) Lipidex-1000 assay showed a dissociation constant Kd = 0.78 +/- 0.18 microM and stoichiometry of 0.47 +/- 0.16 mol/mol for [3H]cholesterol binding to L-PABP. 2) With [3H]cholesterol/phosphatidylcholine liposomes, the cholesterol binding parameters for L-FABP were Kd = 1.53 +/- 0.28 microM and stoichiometry 0.83 +/- 0.07 mol/mol. 3) L-FABP interaction with dehydroergosterol altered the fluorescence intensity and polarization of dehydroergosterol. Dehydroergosterol bound to L-FABP with Kd = 0.37 microM and a stoichiometry of 0.83 mol/mol. 4) Cholesterol and dehydroergosterol decreased L-FABP tyrosine lifetime. Dehydroergosterol binding produced sensitized emission of bound dehydroergosterol with longer lifetime.5) L-FABP bound two cis-parinaric acid molecules/molecule of protein. Cholesterol displaced one of these bound cis-parinaric acids. 6) L-FABP enhanced acyl-CoA:cholesterol acyltransferase in a concentration-dependent manner. In contrast, these assays indicated that I-FABP did not bind sterols. Thus, L-FABP appears able to bind 1 mol of cholesterol/mol of L-FABP, the L-FABP sterol binding site is equivalent to one of the two fatty acid binding sites, and L-FABP stimulates acyl-CoA:cholesterol acyltransferase by transfer of cholesterol.  相似文献   

15.
The phase behavior of L-alpha-dimyristoylphosphatidylcholine/cholesterol mixtures was studied in multilamellar vesicles by fluorescence polarization of the sterol molecule dehydroergosterol and of the polyene molecule alpha-parinaric acid. In the absence of cholesterol, dehydroergosterol exhibited an increase in polarization as DMPC vesicles were heated through the phase transition. This rise in polarization anisotropy was observed over a 0.6-1.0 degrees C increase in temperature with the midpoint of the phase transition occurring at 23.6 degrees C. Addition of 5 mol% cholesterol completely obliterated this change in polarization anisotropy through the phase transition of DMPC. alpha-Parinaric acid underwent a characteristic decrease in polarization anisotropy through the phase transition of DMPC. The change in anisotropy through the phase transition was over 4-fold greater than the values observed with dehydroergosterol. Vesicles containing 5 mol% cholesterol in the presence of alpha-parinaric acid underwent a decrease in polarization anisotropy that was over 75% of the original decrease in amplitude observed in the absence of any membrane cholesterol. The difference in sensitivity of the two fluorescent probes to the phase transition of DMPC as a function of membrane cholesterol content may be explained by a preferential partitioning of dehydroergosterol (and cholesterol) into a sterol-rich phase at low sterol concentrations. This partitioning allows dehydroergosterol to detect sterol-rich regions in the membrane bilayer.  相似文献   

16.
This study examined the kinetics of sterol desorption from monolayer and small unilamellar vesicle membranes to 2-hydroxypropyl-beta-cyclodextrin. The sterols used include cholesterol, dehydroergosterol (ergosta-5,7,9,(11),22-tetraen-3beta-ol) and cholestatrienol (cholesta-5,7,9,(11)-trien-3beta-ol). Desorption rates of dehydroergosterol and cholestatrienol from pure sterol monolayers were faster (3.3-4.6-fold) than the rate measured for cholesterol. In mixed monolayers (sterol: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 30:70 mol%), both dehydroergosterol and cholestatrienol desorbed faster than cholesterol. clearly indicating a difference in interfacial behavior of these sterols. In vesicle membranes desorption of dehydroergosterol was slower than desorption of cholestatrienol, and both rates were markedly affected by the phospholipid composition. Desorption of sterols was slower from sphingomyelin as compared to phosphatidylcholine vesicles. Desorption of fluorescent sterols was also faster from vesicles prepared by ethanol-injection as compared to extruded vesicles. The results of this study suggest that dehydroergosterol and cholestatrienol differ from cholesterol in their membrane behavior, therefore care should be exercised when experimental data derived with these probes are interpreted.  相似文献   

17.
Although the majority of exogenous cholesterol and cholesterol ester enters the cell by LDL-receptor-mediated endocytosis and the lysosomal pathway, the assumption that cholesterol transfers out of the lysosome by rapid (minutes), spontaneous diffusion has heretofore not been tested. As shown herein, lysosomal membranes were unique among known organellar membranes in terms of cholesterol content, cholesterol dynamics, and response to cholesterol-mobilizing proteins. First, the lysosomal membrane cholesterol:phospholipid molar ratio, 0.38, was intermediate between those of the plasma membrane and other organellar membranes. Second, a fluorescence sterol exchange assay showed that the initial rate of spontaneous sterol transfer out of lysosomes and purified lysosomal membranes was extremely slow, t(1/2) >4 days. This was >100-fold longer than that reported in intact cells (2 min) and 40-60-fold longer than from any other known intracellular membrane. Third, when probed with several cholesterol-binding proteins, the initial rate of sterol transfer was maximally increased nearly 80-fold and the organization of cholesterol in the lysosomal membrane was rapidly altered. Nearly half of the essentially nonexchangeable sterol in the lysosomal membrane was converted to rapidly (t(1/2) = 6 min; fraction = 0.06) and slowly (t(1/2) = 154 min; fraction = 0.36) exchangeable sterol domains/pools. In summary, the data revealed that spontaneous cholesterol transfer out of the lysosome and lysosomal membrane was extremely slow, inconsistent with rapid spontaneous diffusion across the lysosomal membrane. In contrast, the very slow spontaneous transfer of sterol out of the lysosome and lysosomal membrane was consistent with cholesterol leaving the lysosome earlier in the endocytic process and/or with cholesterol transfer out of the lysosome being mediated by additional process(es) extrinsic to the lysosome and lysosomal membrane.  相似文献   

18.
We have monitored the organization and dynamics of the hemolytic peptide melittin in membranes containing cholesterol by utilizing the intrinsic fluorescence properties of its functionally important sole tryptophan residue and circular dichroism spectroscopy. The significance of this study is based on the fact that the natural target for melittin is the erythrocyte membrane, which contains high amounts of cholesterol. Our results show that the presence of cholesterol inhibits melittin-induced leakage of lipid vesicles and the extent of inhibition appears to be dependent on the concentration of membrane cholesterol. The presence of cholesterol is also shown to reduce binding of melittin to membranes. Our results show that fluorescence parameters such as intensity, emission maximum, and lifetime of membrane-bound melittin indicate a change in polarity in the immediate vicinity of the tryptophan residue probably due to increased water penetration in presence of cholesterol. This is supported by results from fluorescence quenching experiments using acrylamide as the quencher. Membrane penetration depth analysis by the parallax method shows that the melittin tryptophan is localized at a relatively shallow depth in membranes containing cholesterol. Analysis of energy transfer results using melittin tryptophan (donor) and dehydroergosterol (acceptor) indicates that dehydroergosterol is not randomly distributed and is preferentially localized around the tryptophan residue of membrane-bound melittin, even at the low concentrations used. Taken together, our results are relevant in understanding the interaction of melittin with membranes in general, and with cholesterol-containing membranes in particular, with possible relevance to its interaction with the erythrocyte membrane.  相似文献   

19.
The spontaneous interbilayer transfer of dehydroergosterol, a fluorescent cholesterol analog, was examined using small unilamellar phospholipid vesicles. The kinetic data were best fit by an equation of the form Aexp (-kt) + B. Qualitatively, the general trend of the half-time for transfer and the base values (B) obtained for dehydroergosterol resemble the corresponding values obtained in the earlier studies of cholesterol transfer. However, quantitative differences, which reflect the molecular structure of the sterol, were observed. Acrylamide quenching performed on the donor vesicles at different stages of the transfer indicated that a time-dependent organization of DHE within the vesicles occurs.  相似文献   

20.
Among the large family of fatty acid binding proteins, the liver L-FABP is unique in that it not only binds fatty acids but also interacts with sterols to enhance sterol transfer between membranes. Nevertheless, the mechanism whereby L-FABP potentiates intermembrane sterol transfer is unknown. Both fluorescence and dialysis data indicate L-FABP mediated sterol transfer between L-cell fibroblast plasma membranes occurs by a direct membrane effect: First, dansylated-L-FABP (DNS-L-FABP) is bound to L-cell fibroblast plasma membranes as indicated by increased DNS-L-FABP steady state polarization and phase resolved limiting anisotropy. Second, coumarin-L-FABP (CPM-L-FABP) fluorescence lifetimes were significantly increased upon interaction with plasma membranes. Third, dialysis studies with3H-cholesterol loaded plasma membranes showed that L-FABP added to the donor compartment of the dialysis cell stimulated3H-cholesterol transfer whether or not the dialysis membrane was permeable to L-FABP. However, L-FABP mediated intermembrane sterol transfer did require a sterol binding site on L-FABP. Chemically blocking the ligand binding site also inhibited L-FABP activity in intermembrane sterol transfer. Finally, L-FABP did not act either as an aqueous carrier or in membrane fusion. The fact that L-FABP interacted with plasma membrane vesicles and required a sterol binding site was consistent with a mode of action whereby L-FABP binds to the membrane prior to releasing sterol from the bilayer.Abbreviations 3H-CHO [1,2-3H(N)]-cholesterol - ANTS 8-aminonaphthalene-1,3,6-trisulfonic acid - CF carboxyfluorescein - CHO cholesterol - CPM (coumarin maleimide) 7-diethylamino-3-(4-maleimidylphenyl)-4-methylcoumarin - cPNA cisparinaric acid - DHE (dehydroergosterol) 5,7,9(11),22-ergostatetraen-3-ol - DMF dimethyl formamide - DMPOPOP 1,4-bis[4-methyl-5-phenyl-2-oxazolyl]benzene - DNS (dansyl chloride) 5-dimethylaminonaphthalene-1-sulfonylchloride - DPX p-xylene-bis-pyridinium bromide - FBS fetal bovine serum - fluorescamine 4-phenylspiro[furan-2(3H), 1 phthalan]-3,3-dione - L-FABP liver fatty acid binding protein - NPG p-nitrophenylglyoxal - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine - SUV small unilamellar vesicle(s) - TNM tetranitromethane This work was supported in part by the National Institutes of Health United States Public Health Service (GM31651 and DK41402) and the American Heart Association (Postdoctoral Fellowship to JKW). The helpful assistance of Dr. Scott M. Colles and Mr. Daniel R. Prows in isolating L-FABP was much appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号