首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of robust statistical methods for validation of peptide assignments to tandem mass (MS/MS) spectra obtained using database searching remains an important problem. PeptideProphet is one of the commonly used computational tools available for that purpose. An alternative simple approach for validation of peptide assignments is based on addition of decoy (reversed, randomized, or shuffled) sequences to the searched protein sequence database. The probabilistic modeling approach of PeptideProphet and the decoy strategy can be combined within a single semisupervised framework, leading to improved robustness and higher accuracy of computed probabilities even in the case of most challenging data sets. We present a semisupervised expectation-maximization (EM) algorithm for constructing a Bayes classifier for peptide identification using the probability mixture model, extending PeptideProphet to incorporate decoy peptide matches. Using several data sets of varying complexity, from control protein mixtures to a human plasma sample, and using three commonly used database search programs, SEQUEST, MASCOT, and TANDEM/k-score, we illustrate that more accurate mixture estimation leads to an improved control of the false discovery rate in the classification of peptide assignments.  相似文献   

2.
Researchers have several options when designing proteomics experiments. Primary among these are choices of experimental method, instrumentation and spectral interpretation software. To evaluate these choices on a proteome scale, we compared triplicate measurements of the yeast proteome by liquid chromatography tandem mass spectrometry (LC-MS/MS) using linear ion trap (LTQ) and hybrid quadrupole time-of-flight (QqTOF; QSTAR) mass spectrometers. Acquired MS/MS spectra were interpreted with Mascot and SEQUEST algorithms with and without the requirement that all returned peptides be tryptic. Using a composite target decoy database strategy, we selected scoring criteria yielding 1% estimated false positive identifications at maximum sensitivity for all data sets, allowing reasonable comparisons between them. These comparisons indicate that Mascot and SEQUEST yield similar results for LTQ-acquired spectra but less so for QSTAR spectra. Furthermore, low reproducibility between replicate data acquisitions made on one or both instrument platforms can be exploited to increase sensitivity and confidence in large-scale protein identifications.  相似文献   

3.
Proteins from human liver carcinoma Huh7 cells, representing transformed liver cells, and cultured primary human fetal hepatocytes (HFH) and human HH4 hepatocytes, representing nontransformed liver cells, were extracted and processed for proteome analysis. Proteins from stimulated cells (interferon-alpha treatment for the Huh7 and HFH cells and induction of hepatitis C virus [HCV] proteins for the HH4 cells) and corresponding control cells were labeled with light and heavy cleavable ICAT reagents, respectively. The labeled samples were combined, trypsinized, and subject to cation-exchange and avidin-affinity chromatographies. The resulting cysteine-containing peptides were analyzed by microcapillary LC-MS/MS. The MS/MS spectra were initially analyzed by searching the human International Protein Index database using the SEQUEST software (1). Subsequently, new statistical algorithms were applied to the collective SEQUEST search results of each experiment. First, the PeptideProphet software (2) was applied to discriminate true assignments of MS/MS spectra to peptide sequences from false assignments, to assign a probability value for each identified peptide, and to compute the sensitivity and error rate for the assignment of spectra to sequences in each experiment. Second, the ProteinProphet software (3) was used to infer the protein identifications and to compute probabilities that a protein had been correctly identified, based on the available peptide sequence evidence. The resulting protein lists were filtered by a ProteinProphet probability score p > or = 0.5, which corresponded to an error rate of less than 5%. A total of 1,296, 1,430, and 1,476 proteins or related protein groups were identified in three subdatasets from the Huh7, HFH, and HH4 cells, respectively. In total, these subdatasets contained 2,486 unique protein identifications from human liver cells. An increase of the threshold to p > or = 0.9 (corresponding to an error rate of less than 1%) resulted in 2,159 unique protein identifications (1,146, 1,235, and 1,318 for the Huh7, HFH, and HH4 cells, respectively).  相似文献   

4.
用于串联质谱鉴定多肽的计量方法   总被引:1,自引:0,他引:1  
目前已有多种对串联质谱与数据库中多肽的理论质谱的一致性进行评估的高通量计量算法用于鸟枪法蛋白质组学 (shotgunproteomics)研究。然而这些方法操作时存在大量错误的多肽鉴定。这里提出一种新的串联质谱识别多肽序列的计量算法。该算法综合考虑了串联质谱中不同离子出现的概率、多肽的酶切位点数、理论离子与实验离子的匹配程度和匹配模式。对大容量的串联质谱数据集的测试表明 ,根据算法开发的软件PepSearch比目前最常用的软件SEQUEST有更好的鉴定准确性。PepSearch可从http : compbio.sibsnet.org projects pepsearch下载。  相似文献   

5.
The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments more representative of organism-specific composite data sets.  相似文献   

6.
A very popular approach in proteomics is the so-called "shotgun LC-MS/MS" strategy. In its mostly used form, a total protein digest is separated by ion exchange fractionation in the first dimension followed by off- or on-line RP LC-MS/MS. We replaced the first dimension by isoelectric focusing in the liquid phase using the Off-Gel device producing 15 fractions. As peptides are separated by their isoelectric point in the first dimension and hydrophobicity in the second, those experimentally derived parameters (pI and R(T)) can be used for the validation of potentially identified peptides. We applied this strategy to a cellular extract of Drosophila Kc167 cells and identified peptides with two different database search engines, namely PHENYX and SEQUEST, with PeptideProphet validation of the SEQUEST results. PHENYX returned 7582 potential peptide identifications and SEQUEST 7629. The SEQUEST results were reduced to 2006 identifications by validation with PeptideProphet. Validation of the PeptideProphet, SEQUEST and PHENYX results by pI and R(T) parameters confirmed 1837 PeptideProphet identifications while in the remainder of the SEQUEST results another 1130 peptides were found to be likely hits. The validation on PHENYX resulted in the fixation of a solid p-value threshold of <1 x 10(-04) that sets by itself the correct identification confidence to >95%, and a final count of 2034 highly confident peptide identifications was achieved after pI and R(T) validation. Although the PeptideProphet and PHENYX datasets have a very high confidence the overlap of common identifications was only at 79.4%, to be explained by the fact that data interpretation was done searching different protein databases with two search engines of different algorithms. The approach used in this study allowed for an automated and improved data validation process for shotgun proteomics projects producing MS/MS peptide identification results of very high confidence.  相似文献   

7.
Shotgun tandem mass spectrometry-based peptide sequencing using programs such as SEQUEST allows high-throughput identification of peptides, which in turn allows the identification of corresponding proteins. We have applied a machine learning algorithm, called the support vector machine, to discriminate between correctly and incorrectly identified peptides using SEQUEST output. Each peptide was characterized by SEQUEST-calculated features such as delta Cn and Xcorr, measurements such as precursor ion current and mass, and additional calculated parameters such as the fraction of matched MS/MS peaks. The trained SVM classifier performed significantly better than previous cutoff-based methods at separating positive from negative peptides. Positive and negative peptides were more readily distinguished in training set data acquired on a QTOF, compared to an ion trap mass spectrometer. The use of 13 features, including four new parameters, significantly improved the separation between positive and negative peptides. Use of the support vector machine and these additional parameters resulted in a more accurate interpretation of peptide MS/MS spectra and is an important step toward automated interpretation of peptide tandem mass spectrometry data in proteomics.  相似文献   

8.

Background  

In proteomic analysis, MS/MS spectra acquired by mass spectrometer are assigned to peptides by database searching algorithms such as SEQUEST. The assignations of peptides to MS/MS spectra by SEQUEST searching algorithm are defined by several scores including Xcorr, ΔCn, Sp, Rsp, matched ion count and so on. Filtering criterion using several above scores is used to isolate correct identifications from random assignments. However, the filtering criterion was not favorably optimized up to now.  相似文献   

9.
Reliable statistical validation of peptide and protein identifications is a top priority in large-scale mass spectrometry based proteomics. PeptideProphet is one of the computational tools commonly used for assessing the statistical confidence in peptide assignments to tandem mass spectra obtained using database search programs such as SEQUEST, MASCOT, or X! TANDEM. We present two flexible methods, the variable component mixture model and the semiparametric mixture model, that remove the restrictive parametric assumptions in the mixture modeling approach of PeptideProphet. Using a control protein mixture data set generated on an linear ion trap Fourier transform (LTQ-FT) mass spectrometer, we demonstrate that both methods improve parametric models in terms of the accuracy of probability estimates and the power to detect correct identifications controlling the false discovery rate to the same degree. The statistical approaches presented here require that the data set contain a sufficient number of decoy (known to be incorrect) peptide identifications, which can be obtained using the target-decoy database search strategy.  相似文献   

10.
Database-searching programs generally identify only a fraction of the spectra acquired in a standard LC/MS/MS study of digested proteins. Subtle variations in database-searching algorithms for assigning peptides to MS/MS spectra have been known to provide different identification results. To leverage this variation, a probabilistic framework is developed for combining the results of multiple search engines. The scores for each search engine are first independently converted into peptide probabilities. These probabilities can then be readily combined across search engines using Bayesian rules and the expectation maximization learning algorithm. A significant gain in the number of peptides identified with high confidence with each additional search engine is demonstrated using several data sets of increasing complexity, from a control protein mixture to a human plasma sample, searched using SEQUEST, Mascot, and X! Tandem database-searching programs. The increased rate of peptide assignments also translates into a substantially larger number of protein identifications in LC/MS/MS studies compared to a typical analysis using a single database-search tool.  相似文献   

11.
Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.  相似文献   

12.
Several methods have been used to identify peptides that correspond to tandem mass spectra. In this work, we describe a data set of low energy tandem mass spectra generated from a control mixture of known protein components that can be used to evaluate the accuracy of these methods. As an example, these spectra were searched by the SEQUEST application against a human peptide sequence database. The numbers of resulting correct and incorrect peptide assignments were then determined. We show how the sensitivity and error rate are affected by the use of various filtering criteria based upon SEQUEST scores and the number of tryptic termini of assigned peptides.  相似文献   

13.
Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss.  相似文献   

14.
Mass spectrometers that provide high mass accuracy such as FT-ICR instruments are increasingly used in proteomic studies. Although the importance of accurately determined molecular masses for the identification of biomolecules is generally accepted, its role in the analysis of shotgun proteomic data has not been thoroughly studied. To gain insight into this role, we used a hybrid linear quadrupole ion trap/FT-ICR (LTQ FT) mass spectrometer for LC-MS/MS analysis of a highly complex peptide mixture derived from a fraction of the yeast proteome. We applied three data-dependent MS/MS acquisition methods. The FT-ICR part of the hybrid mass spectrometer was either not exploited, used only for survey MS scans, or also used for acquiring selected ion monitoring scans to optimize mass accuracy. MS/MS data were assigned with the SEQUEST algorithm, and peptide identifications were validated by estimating the number of incorrect assignments using the composite target/decoy database search strategy. We developed a simple mass calibration strategy exploiting polydimethylcyclosiloxane background ions as calibrant ions. This strategy allowed us to substantially improve mass accuracy without reducing the number of MS/MS spectra acquired in an LC-MS/MS run. The benefits of high mass accuracy were greatest for assigning MS/MS spectra with low signal-to-noise ratios and for assigning phosphopeptides. Confident peptide identification rates from these data sets could be doubled by the use of mass accuracy information. It was also shown that improving mass accuracy at a cost to the MS/MS acquisition rate substantially lowered the sensitivity of LC-MS/MS analyses. The use of FT-ICR selected ion monitoring scans to maximize mass accuracy reduced the number of protein identifications by 40%.  相似文献   

15.
The sequence tag-based peptide identification methods are a promising alternative to the traditional database search approach. However, a more comprehensive analysis, optimization, and comparison with established methods are necessary before these methods can gain widespread use in the proteomics community. Using the InsPecT open source code base ( Tanner et al., Anal. Chem. 2005, 77, 4626- 39 ), we present an improved sequence tag generation method that directly incorporates multicharged fragment ion peaks present in many tandem mass spectra of higher charge states. We also investigate the performance of sequence tagging under different settings using control data sets generated on five different types of mass spectrometers, as well as using a complex phosphopeptide-enriched sample. We also demonstrate that additional modeling of InsPecT search scores using a semiparametric approach incorporating the accuracy of the precursor ion mass measurement provides additional improvement in the ability to discriminate between correct and incorrect peptide identifications. The overall superior performance of the sequence tag-based peptide identification method is demonstrated by comparison with a commonly used SEQUEST/PeptideProphet approach.  相似文献   

16.
A concept of unique peptides(CUP)was proposed and implemented to identify whole-cell proteins from tandem mass spectrometry(MS/MS)ion spectra.A unique peptide is defined as a peptide,irrespective of its length,that exists only in one protein of a proteome of interest,despite the fact that this peptide may appear more than once in the same protein.Integrating CUP,a two-step whole-cell protein identification strategy was developed to further increase the confidence of identified proteins.A dataset containing 40,243 MS/MS ion spectra of Saccharomyces cerevisiae and protein identification tools including Mascot and SEQUEST were used to illustrate the proposed concept and strategy.Without implementing CUP,the proteins identified by SEQUEST are 2.26 fold of those identified by Mascot.When CUP was applied,the proteins bearing unique peptides identified by SEQUEST are3.89 fold of those identified by Mascot.By cross-comparing two sets of identified proteins,only 89 common proteins derived from CUP were found.The key discrepancy between identified proteins was resulted from the filtering criteria employed by each protein identification tool.According to the origin of peptides classified by CUP and the commonality of proteins recognized by protein identification tools,all identified proteins were cross-compared,resulting in four groups of proteins possessing different levels of assigned confidence.  相似文献   

17.
The utility and advantages of the recently introduced two-dimensional quadrupole ion trap mass spectrometer in proteomics over the traditional three-dimensional ion trap mass spectrometer have not been systematically characterized. Here we rigorously compared the performance of these two platforms by using over 100,000 tandem mass spectra acquired with identical complex peptide mixtures and acquisition parameters. Specifically we compared four factors that are critical for a successful proteomic study: 1) the number of proteins identified, 2) sequence coverage or the number of peptides identified for every protein, 3) the data base matching SEQUEST X(corr) and S(p) score, and 4) the quality of the fragment ion series of peptides. We found a 4-6-fold increase in the number of peptides and proteins identified on the two-dimensional ion trap mass spectrometer as a direct result of improvement in all the other parameters examined. Interestingly more than 70% of the doubly and triply charged peptides, but not the singly charged peptides, showed better quality of fragmentation spectra on the two-dimensional ion trap. These results highlight specific advantages of the two-dimensional ion trap over the conventional three-dimensional ion traps for protein identification in proteomic experiments.  相似文献   

18.
Scherl A  Tsai YS  Shaffer SA  Goodlett DR 《Proteomics》2008,8(14):2791-2797
Although mass spectrometers are capable of providing high mass accuracy data, assignment of true monoisotopic precursor ion mass is complicated during data-dependent ion selection for LC-MS/MS analysis of complex mixtures. The complication arises when chromatographic peak widths for a given analyte exceed the time required to acquire a precursor ion mass spectrum. The result is that many measured monoisotopic masses are misassigned due to calculation from a single mass spectrum with poor ion statistics based on only a fraction of the total available ions for a given analyte. Such data in turn produces errors in automated database searches, where precursor m/z value is one search parameter. We propose here a postacquisition approach to correct misassigned monoisotopic m/z values that involves peak detection over the entire elution profile and correction of the precursor ion monoisotopic mass. As a result of using this approach to reprocess shotgun proteomic data we increased peptide sequence assignments by 10% while reducing the estimated false positive ratio from 1 to 0.2%. We also show that 4% of the salvaged identifications may be accounted for by correction of mixed tandem mass spectra resulting from fragmentation of multiple peptides simultaneously, a situation which we refer to as accidental CID.  相似文献   

19.
High throughput identification of peptides in databases from tandem mass spectrometry data is a key technique in modern proteomics. Common approaches to interpret large scale peptide identification results are based on the statistical analysis of average score distributions, which are constructed from the set of best scores produced by large collections of MS/MS spectra by using searching engines such as SEQUEST. Other approaches calculate individual peptide identification probabilities on the basis of theoretical models or from single-spectrum score distributions constructed by the set of scores produced by each MS/MS spectrum. In this work, we study the mathematical properties of average SEQUEST score distributions by introducing the concept of spectrum quality and expressing these average distributions as compositions of single-spectrum distributions. We predict and demonstrate in the practice that average score distributions are dominated by the quality distribution in the spectra collection, except in the low probability region, where it is possible to predict the dependence of average probability on database size. Our analysis leads to a novel indicator, the probability ratio, which takes optimally into account the statistical information provided by the first and second best scores. The probability ratio is a non-parametric and robust indicator that makes spectra classification according to parameters such as charge state unnecessary and allows a peptide identification performance, on the basis of false discovery rates, that is better than that obtained by other empirical statistical approaches. The probability ratio also compares favorably with statistical probability indicators obtained by the construction of single-spectrum SEQUEST score distributions. These results make the robustness, conceptual simplicity, and ease of automation of the probability ratio algorithm a very attractive alternative to determine peptide identification confidences and error rates in high throughput experiments.  相似文献   

20.
Computational analysis of mass spectra remains the bottleneck in many proteomics experiments. SEQUEST was one of the earliest software packages to identify peptides from mass spectra by searching a database of known peptides. Though still popular, SEQUEST performs slowly. Crux and TurboSEQUEST have successfully sped up SEQUEST by adding a precomputed index to the search, but the demand for ever-faster peptide identification software continues to grow. Tide, introduced here, is a software program that implements the SEQUEST algorithm for peptide identification and that achieves a dramatic speedup over Crux and SEQUEST. The optimization strategies detailed here employ a combination of algorithmic and software engineering techniques to achieve speeds up to 170 times faster than a recent version of SEQUEST that uses indexing. For example, on a single Xeon CPU, Tide searches 10,000 spectra against a tryptic database of 27,499 Caenorhabditis elegans proteins at a rate of 1550 spectra per second, which compares favorably with a rate of 8.8 spectra per second for a recent version of SEQUEST with index running on the same hardware.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号