首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.

  相似文献   

2.
Traditionally derived from fossil fuels, biological production of propionic acid has recently gained interest. Propionibacterium species produce propionic acid as their main fermentation product. Production of other organic acids reduces propionic acid yield and productivity, pointing to by‐products gene‐knockout strategies as a logical solution to increase yield. However, removing by‐product formation has seen limited success due to our inability to genetically engineer the best producing strains (i.e. Propionibacterium acidipropionici). To overcome this limitation, random mutagenesis continues to be the best path towards improving strains for biological propionic acid production. Recent advances in next generation sequencing opened new avenues to understand improved strains. In this work, we use genome shuffling on two wild type strains to generate a better propionic acid producing strain. Using next generation sequencing, we mapped the genomic changes leading to the improved phenotype. The best strain produced 25% more propionic acid than the wild type strain. Sequencing of the strains showed that genomic changes were restricted to single point mutations and gene duplications in well‐conserved regions in the genomes. Such results confirm the involvement of gene conversion in genome shuffling as opposed to long genomic insertions.  相似文献   

3.
《Anaerobe》2002,8(1):41-47
Granulomatous lesions from bovines were examined using standard histological methods from geographically separated herds in Queensland, Australia. Bacteria recovered from a number of these lesions were studied by the staff of Queensland Department of Primary Industries, Oonoonba Veterinary Laboratory, using standard microbiological methods. The bacteria appeared to be phenotypically similar to each other and like members of the genus Propionibacterium but could not be assigned to any currently named species. Actinomyces species, a cause of granulomatous lesions in cattle, were ruled out based on polyphasic testing and negative results for direct fluorescent antibody. Phenotypic studies indicated that strains were fermentative. Chemotaxonomic analyses revealed meso-diaminopimelic acids in the cell walls, a majority of the cellular fatty acids were of the branched-chain type and products of fermentation included major propionic acid. Comparative 16S rRNA gene sequencing demonstrated that the bacteria were genealogically highly related to each other and constituted a new subline within the genusPropionibacterium, displaying >3% divergence from other named species of that genus. The novel taxon could be distinguished from other validly described Propionibacterium species and so it is proposed that these strains represent a new species, Propionibacterium australiense sp. nov. Health Canada's National Microbiology Laboratory (NML) identifier numbers 98A072 (type strain) and 98A078 have been deposited as ATCC BAA-264T, CCUG 46075T, and ATCC BAA-263, CCUG 46174, respectively. Genbank accession number for the 16S rRNA gene sequence for 98A072 is AF225962.  相似文献   

4.
Enrichment of Propionibacterium and production of propionic acid in paddy soil after addition of glucose, casamino acids, or Na-lactate, respectively, were investigated. Only in the case of Na-lactate, both enrichment of Propionibacterium (74% of total anaerobes isolated) and production of large amounts of propionic acid were observed. These results suggest that lactate may support the growth of Propionibacterium in paddy soil.  相似文献   

5.
The genus Saccharomyces comprises very closely related species. This high degree of relationship makes a simple identification and differentiation of strains difficult since these species are hardly discriminable by their morphological and physiological features. A sequence analysis of ribosomal DNA and the corresponding internal transcribed spacers can only rarely be successfully applied. In this study, we proved the applicability of a novel DNA fingerprinting method, the SAPD-PCR (specifically amplified polymorphic DNA) and of MALDI-TOF-MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) fingerprinting with the MALDI Biotyper for the differentiation of species belonging to the genus Saccharomyces. It was possible with SAPD-PCR to create specific banding patterns for all Saccharomyces species. Different strains of the same species produced nearly the same banding patterns. Specific and reproducible reference spectra could be generated for each of the strains with the MALDI Biotyper. Therefore, SAPD-PCR and MALDI-TOF-MS can be fast and reliable tools to identify these related Saccharomyces species which are applied in many biotechnological processes.  相似文献   

6.
A spoilage organism isolated from turbid beer is described. The bacterium was gram negative, catalase negative, strictly anaerobic, and rod shaped, having flagella only on one side of the cell. The main metabolic product was propionic acid. In addition acetic, succinic, and lactic acids and acetoin were formed. Malonate inhibited the production of propionic acid by the strain studied and by both Pectinatus and Propionibacterium strains. The guanine-plus-cytosine content of deoxyribonucleic acid was 36 mol%. Differences between this strain and Pectinatus strains were 2 to 5 percentage points. Immunofluorescent staining and gel diffusion precipitin tests revealed that the antigenic structure differed from those of Pectinatus strains. The isolated organism can, despite some differences, be regarded as belonging to the genus Pectinatus.  相似文献   

7.
Matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry was used to characterize the spores of 14 microorganisms of the Bacillus cereus group. This group includes the four Bacillus species B. anthracis, B. cereus, B. mycoides, and B. thuringiensis. MALDI mass spectra obtained from whole bacterial spores showed many similarities between the species, except for B. mycoides. At the same time, unique mass spectra could be obtained for the different B. cereus and B. thuringiensis strains, allowing for differentiation at the strain level. To increase the number of detectable biomarkers in the usually peak-poor MALDI spectra of spores, the spores were treated by corona plasma discharge (CPD) or sonicated prior to MALDI analysis. Spectra of sonicated or CPD-treated spores displayed an ensemble of biomarkers common for B. cereus group bacteria. Based on the spectra available, these biomarkers differentiate B. cereus group spores from those of Bacillus subtilis and Bacillus globigii. The effect of growth medium on MALDI spectra of spores was also explored.  相似文献   

8.
Archaea and a number of groups of environmentally important bacteria, e.g., sulfate-reducing bacteria, anoxygenic phototrophs, and some thermophiles, are difficult to characterize using current methods developed for phenotypically differentiating heterotrophic bacteria. We have evaluated matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) as a rapid method for identifying different groups of extremophilic prokaryotes using a linear mass spectrometer (Micromass, UK). The instrument is designed to acquire mass-spectral patterns from prokaryotic cell-wall components between masses of 500 and 10,000 Da in a statistically robust manner and create a database that can be used for identification. We have tested 28 archaea (10 genera, 20 spp.) and 42 bacteria (25 genera, 37 spp.) and found that all species yield reproducible, unique mass-spectral profiles. As a whole, the profiles for the archaea had fewer peaks and showed less differentiation compared to the bacteria, perhaps reflecting fundamental differences in cell-wall structure. The halophilic archaea all had consistent patterns that showed little differentiation; however, the software was able to consistently distinguish Halobacterium salinarium, Halococcus dombrowski, and Haloarcula marismortui from one another, although it could not always correctly distinguish four strains of Hb. salinarium from one another. The method was able to reliably identify 105 cells of either Albidovulum inexpectatum or Thermococcus litoralis and could detect as low as 103 cells. We found that the matrix, alpha-cyano-4-hydroxy-cinnamic acid yielded better spectra for archaea than 5-chloro-2-mercapto-benzothiazole. Overall, the method was rapid, required a minimum of sample processing, and was capable of distinguishing and identifying a very diverse group of prokaryotes.Communicated by F. Robb  相似文献   

9.
The present study aims to examine PAB culture, synthesizing a significant number of iron-containing enzymes and capable of adhesion. Results show that increased iron concentration increased enzymes activity in all strains studied. An increase of iron ions level increasing up to 0.50–0.60 mg/ml leads to a 1.3-fold and 2-dold increase of catalase and SOD activity respectively, peroxidase activity was virtually unchanged. Optimal iron ions Fe2+ doses to ensure active PAB growth were determined. Of all the cultures studied P. fredenreichii subsp. shermanii AC-2503 has high adhesion: AAI = 5.1; MAI = 5.60; erythrocyte involvement rate = 87%. It was shown that certain iron ion concentrations increased the specific growth rate of PAB (P. freudenrichii subsp. freudenrichii AC-2500 (0.3 mg/ml) and other strains (0.4 mg/ml). A further increase in the iron ions concentration slows bacterial growth, while excessive content inhibits metabolism, including defense mechanisms that offset the negative effects of the metal. Our subsequent studies will focus on the effect of other metal ions on the metabolism of bacteria, mainly lactic acid bacteria, which are important biotechnological objects of the industry similar to propionic acid bacteria.  相似文献   

10.
Aims: To investigate the inhibition potential of leaf‐associated bacteria against the pathogen of bacterial leaf spot of Euphorbia pulcherrima. Methods and Results: Seven out of 200 bacterial strains were effective antagonists by in vitro screening and the two strains PAB241 and PAB242 significantly reduced the disease incidence and severity as foliar treatments of E. pulcherrima. The two effective strains, PAB241 and PAB242, were both identified as Bacillus amyloliquefaciens by a polyphasic approach including phenotypic feature, carbon source utilization profile, fatty acid methyl esters and analysis of 16S rRNA gene sequence. In addition, the suspensions of B. amyloliquefaciens PAB241 and PAB242 showed antibacterial activities against the pathogen of bacterial leaf spot of E. pulcherrima under different treatments. Conclusions: The leaf‐associated bacteria, B. amyloliquefaciens PAB241 and PAB242, markedly inhibited the growth of X. axonopodis pv. poinsettiicola under different treatments and protected E. pulcherrima from pathogen infection in growth chamber conditions. Significance and Impact of the Study: This is the first study that showed B. amyloliquefaciens from plant leaves was a potential bactericide against bacterial leaf spot of E. pulcherrima.  相似文献   

11.
The effect of a new strain ofPropionibacterium shermanii (PAB), applied at ensiling, on the aerobic stability of wheat and sorghum silages was studied in several experiments under laboratory conditions. In the one experiment with wheat and in those with sorghum a lactic acid bacteria (LAB) inoculant (Lactobacillus plantarum andPediococcus cerevisiae) was also included. After treatment, the chopped forages were ensiled in 1.5-L anaerobic jars which were sampled in triplicate on predetermined dates to follow fermentation dynamics. At the end of the experiments, the silages were subjected to an aerobic stability test. The PAB inoculant improved the aerobic stability only in one experiment with wheat, in which the decrease in pH was very slow; the final pH remained relatively high (4.5). The PAB-treated silages contained 19.5±2.0 g of propionic acid per kg of dry matter. In the experiments with sorghum, the control and PAB-inoculated silages were stable, whereas LAB-inoculated silages deteriorated. The results suggest that PAB can survive in and improve the aerobic stability of only slow-fermenting silages which are prone to aerobic deterioration.  相似文献   

12.
This study focuses on the characterization of bacterial and yeast species through their autofluorescence spectra. Lactic acid bacteria (Lactobacillus sp.), and yeast (Saccharomyces sp.) were cultured under controlled conditions and studied for variations in their autofluorescence, particularly in the area representative of tryptophan residues of proteins. The emission and excitation spectra clearly reveal that bacterial and yeast species can be differentiated by their intrinsic fluorescence with UV excitation. The possibility of differentiation between different strains of Saccharomyces yeast was also studied, with clear differences observed for selected strains. The study shows that fluorescence can be successfully used to differentiate between yeast and bacteria and between different yeast species, through the identification of spectroscopic fingerprints, without the need for fluorescent staining.  相似文献   

13.
The genus Propionibacterium has a wide range of probiotic activities that are exploited in dairy and fermentation systems such as cheeses, propionic acid, and tetrapyrrole compounds. In order to improve production of tetrapyrrole compounds, we expressed the hemA gene, which encodes δ-aminolevulinic acid (ALA) synthase from Rhodobacter sphaeroides, and the hemB gene, which encodes porphobilinogen (PBG) synthase from Propionibacterium freudenreichii subsp. shermanii IFO12424, either monocistronically or polycistronically in strain IFO12426. The recombinant strains accumulated larger amounts of ALA and PBG, with resultant 28- to 33-fold-higher production of porphyrinogens, such as uroporphyrinogen and coproporphyrinogen, than those observed in strain IFO12426, which harbored the shuttle vector pPK705.  相似文献   

14.
Aim:  To investigate the applicability of rpoB gene, which encodes the β subunit of RNA polymerase, to be used as an alternative to 16S rRNA for sequence similarity analysis in the thermophilic genus Geobacillus. Rapid and reproducible repetitive extragenic palindromic fingerprinting techniques (REP‐ and BOX‐polymerase chain reaction) were also used. Methods and Results:  rpoB DNA (458 bp) were amplified from 21 Geobacillus‐ and Bacillus type strains, producing different BOX‐ and REP‐PCR profiles, in addition to 11 thermophilic isolates of Geobacillus and Bacillus species from a Santorini volcano habitat. The sequences and the phylogenetic tree of rpoB were compared with those obtained from 16S rRNA gene analysis. The results demonstrated between 90–100% (16S rRNA) and 74–100% (rpoB) similarity among examined bacteria. Conclusion:  BOX‐ and REP‐PCR can be applied for molecular typing within Geobacillus genus. rpoB sequence similarity analysis permits a more accurate discrimination of the species within the Geobacillus genus than the more commonly used 16S rRNA. Significance and Impact of the Study:  The obtained results suggested that rpoB sequence similarity analysis is a powerful tool for discrimination between species within the ecologically and industrially important strains of Geobacillus genus.  相似文献   

15.
Aims: To investigate the occurrence and distribution of thermo‐acidophilic bacteria (TAB) associated with various commercial fruit crop soils in Japan and to assess their ability to produce the odorous phenolic compound, guaiacol. Methods and Results: Phylogenetic analysis based on the 5′ end of the 16S rRNA gene (approximately 500 bp), was performed on 62 TAB isolated from the soil of several Japanese fruit orchards. The results suggested that 60 of the bacterial strains analysed belonged to the genus Alicyclobacillus, while the remaining two belonged to the genus Bacillus. The majority of strains (58%) were identified as Alicyclobacillus acidoterrestris. This group partitioned into three phylogenetically distinct subgroups (A–C). Isolates identified as A. acidiphilus (two strains), A. acidoterrestris (36 strains), and A. hesperidum subsp. aigle (one strain), produced guaiacol from vanillic acid. Levels of guaiacol production varied significantly among strains. The guaiacol producing phenotype was conserved among certain species, however no correlation was observed between levels of guaiacol production and 16S rRNA gene‐based phylogenetic relatedness. Conclusions: Alicyclobacillus acidoterrestris and Alicyclobacillus contaminans were widely distributed among various fruit orchards in Japan. Guaiacol production was common at the species/subspecies level; however the amount of guaiacol produced by each strain varied significantly. Significance and Impact of the Study: This study provides a comprehensive phylogenetic survey of Alicyclobacillus species in Japanese fruit orchards. Quality control standards for guaiacol producing Alicyclobacillus have also been described.  相似文献   

16.
Data for bacterial identification were provided by culturing anaerobic bacteria under standardized conditions followed by extraction and methylation of cellular long-chain fatty acids and gas chromatographic analysis. The databases of fatty acid methyl ester (FAMEs) profiles for two predominant ruminal genera,Prevotella andButyrivibrio, were created. Major long-chain cellular fatty acids found in the 23 analyzedPrevotella strains were 15:0 (anteiso), 15:0, 15:0 (iso) and 16:0. The strains ofPrevotella could be well identified on species level by the characteristic ratios among major fatty acids and by acids unique fatty for each species. The 45Butyrivibrio strains were grouped into 4 major and 2 minor groups according to FAMEs profiles. The major fatty acids for the bulk of theButyrivibrio strains were 14:0, 15:1, 16:0 and 16:0 (iso). This groups corresponded to those based on 16S rDNA sequences.  相似文献   

17.
Aims: To propose a universal workflow of sample preparation method for the identification of highly pathogenic bacteria by MALDI‐TOF MS. Methods and Results: Fifteen bacterial species, including highly virulent Gram‐positive (Bacillus anthracis and Clostridium botulinum) and Gram‐negative bacteria (Brucella melitensis, Burkholderia mallei, Francisella tularensis, Shigella dysenteriae, Vibrio cholerae, Yersinia pestis and Legionella pneumophila), were employed in the comparative study of four sample preparation methods compatible with MALDI‐TOF MS. The yield of bacterial proteins was determined by spectrophotometry, and the quality of the mass spectra, recorded in linear mode in the range of 2000–20 000 Da, was evaluated with respect to the information content (number of signals) and quality (S/N ratio). Conclusions: Based on the values of protein concentration and spectral quality, the method using combination of ethanol treatment followed by extraction with formic acid and acetonitrile was the most efficient sample preparation method for the identification of highly pathogenic bacteria using MALDI‐TOF MS. Significance and Impact of the Study: The method using ethanol/formic acid generally shows the highest extraction efficacy and the spectral quality with no detrimental effect caused by storage. Thus, this can be considered as a universal sample preparation method for the identification of highly virulent micro‐organisms by MALDI‐TOF mass spectrometry.  相似文献   

18.
Aims: A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate‐reducing bacteria (SRB) and thiosulfate‐reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. Methods and Results: To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT‐IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13‐PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra‐ and inter‐species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. Conclusion: Overall, the combination of the FT‐IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology‐induced corrosion (MIC) processes. Significance and Impact of the Study: Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future.  相似文献   

19.
MALDI mass spectra were generated for the type strain of Arthrobacter crystallopoietes VKM Ac-1107T and for closely related (99.6?C100% 16S rRNA gene similarity) halotolerant Arthrobacter strains, as well as for some other Arthrobacter species. Results of the cluster analysis of the spectra were in agreement with the genotypic characteristics of bacteria (DNA-DNA hybridization and BOX-PCR). The data obtained in this study indicate that the halotolerant strains belong to two new Arthrobacter species. Specific peaks which can serve as chemotaxonomic markers of the species composing the phylogenetic group ??Arthrobacter crystallopoietes?? were revealed.  相似文献   

20.
Restriction endonuclease patterns generated by Pulsed-Field Gel Electrophoresis (PFGE) were used to compare 96 strains of dairy propionibacteria originating from dairy products, international and industrial collections; endonucleases XbaI and SspI gave satisfactory restriction patterns. However, whereas XbaI can be used for Propionibacterium freudenreichii, SspI seems more suitable for the three other species: P. acidipropionici, P. thoenii, and P. jensenii. It is a convenient method to differentiate the dairy propionibacteria from closely related bacteria and from others usually present in dairy products. We observed a considerable restriction fragment length polymorphism among the Propionibacterium chromosomes and especially for P. freudenreichii: among 48 strains we detected 40 different patterns. This species is the most commonly encountered in the Swiss-type cheeses and is the only Propionibacterium species used as a cheese starter. Conversely, the species P. acidipropionici is not very diverse: among nine strains we observed only four different patterns, two of which were closely related. This is probably because this species is not used as a starter in cheese manufacture and consequently is poorly represented in collections. When strains come from geographical different isolates, their patterns are always different with very few common bands. The presence of numerous identical strains was due to the fact that they were present at the same time in the national collections, research laboratory collections, and in the industrial ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号