首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. J. Hill  V. Ahmadjian 《Planta》1972,103(3):267-277
Summary When isolated in pure culture, four genera of lichen algae were able to produce the polyol which is known to move from the alga to the fungus in lichens with these algae. This conclusion corrects earlier suggestions that the mobile polyol is only formed by the alga in the lichen thallus. Stichococcus produced sorbitol and it is therefore suggested that, in lichens with this alga, sorbitol moves between the symbionts. Hyalococcus and Stichococcus had a similar pattern of incorporation of H14CO 3 - in the light, suggesting a close relationship between these algae which are only separated now on morphological grounds.The pattern of incorporation of H14CO 3 - in the light into Cladonia cristatella and its alga (Trebouxia erici) in culture indicates that in the cultured algae more 14C was incorporated into ethanol insoluble substances and lipids and less into ribitol than in the lichen. The pattern in a joint culture of the alga and the fungus of C. cristatella was approximately intermediate between that of the lichen and the alga. However, only a small amount of 14C fixed by the alga reached the fungus in the joint culture, and it is therefore suggested that the presence of the fungus without morphological differentiation into a lichen thallus is not sufficient to promote the alga to release carbohydrate.  相似文献   

2.
Variations in stable carbon isotope discrimination (δ) were investigated across the thalli of several lichen species possessing different photobiont associations. Lichens containing (i) green algae (phycobiont), (ii) green algae in association with cyanobacteria confined in cephalodia, or (iii) cyanobacteria (cyanobiont) as the photobiont partner were studied. Carbon isotope discrimination was analysed in different thallus sections, which varied in distance from the margin and in age. The marginal thallus region is considered to be youngest, while the central region is thought to be oldest. This analysis showed a clear variation in δ across the thallus related to distance from the growing margin. In most of the species examined, the highest δ values were found in marginal regions (younger), while the central and basal regions (older) showed significantly lower δ. To investigate the effects of the historical increase in atmospheric CO2 concentration and the concurrent decrease in the 13C content of atmospheric CO2 on the δ of lichens, experiments were carried out on herbarium samples of Lobaria pulmonaria collected from the mid 19th Century to 1953. The results obtained showed a pattern of variation of δ consistent with that of freshly collected samples; δ decreased substantially with increasing distance from the thallus margin, irrespective of the collection date. Moreover, no consistent variation of discrimination was found among different collection dates. These results demonstrate that the observed variation in δ is caused by age-related changes in the physiological behaviour of different thallus sections, and that the past 150 years of increasing CO2 concentration have not had significant effects on A in L. pulmonaria. Photosynthesis measurements, chlorophyll analysis and observations using optical microscopy, performed on freshly collected lichens, showed significant changes in morphological and physiological characteristics across the thallus. Particularly, remarkable variations in thickness were found across the thallus. These anatomical changes may be responsible for the variation in δ, through variations in CO2 transfer resistance and, consequently, in CO2 availability across the thallus. The lack of age-dependent variation in δ in cyanobiont lichens is possibly attributable to the operation of a CO2-coneentrating mechanism and, therefore, to a more constant CO2 environment across the thallus in this lichen group.  相似文献   

3.
Relations between irradiance (I) and lichen growth were investigated for five macro‐lichens growing at two sites in Sweden. The lichens represented different mycobiont–photobiont associations, two morphologies (foliose, fruticose) and two life forms (epiphytic, terricolous). The lichens were transplanted at two geographically distant sites in Sweden (1000 km apart) from Sept 1995 to Sept 1996 in their typical microhabitats, where microclimate and growth were followed. Between April/May and Sept 96, the terricolous species had a dry matter gain of 0·2 to 0·4 g (g DW)–1 and the epiphytes 0·01 to 0·02 g (g DW)–1. When related to area, growth amounted to 30 to 70 g m?2 for the terricolous species and to 1 to 4 g m?2 for the epiphytes. There was a strong correlation between growth and intercepted irradiance when the lichens were wet (Iwet), with 0·2 to 1·1 g lichen dry matter being produced per MJ solar energy. Across the 10 sets of transplants, light use efficiencies of dry matter yield (e) ranged between 0·5 and 2%, using an energy equivalent of 17·5 kJ g?1 of lichen dry matter. The higher productivity of the terricolous species was due to longer periods with thallus water contents sufficient for metabolic activity and because of the higher mean photon flux densities of their microhabitat. A four‐fold difference in photosynthetic capacity among the species was also important. It is concluded that lichen dry matter gain was primarily related to net carbon gain during metabolically active periods, which was determined by light duration, photon flux density and photosynthetic capacity.  相似文献   

4.
Plant communities were studied on Barton Peninsula around King Sejong Station on King George Island, maritime Antarctic. The objective of this study was to document the occurrence and distribution of plant assemblages to provide the bases for monitoring the effects of environmental changes and human impact on the vegetation of this area. Approximately 47% of the investigated area was covered by vegetation. Crustose lichens showed the highest mean cover (21%) among vegetation components. The total mean cover of the four dominant taxa, together with the other three major subdominant components, i.e., Usnea spp., Andreaea spp. and Sanionia georgico-uncinata, was 78.2% of the total cover of all the species. Lichen cover and species diversity increased with altitude and the time of exposure from snow. Lichens contributed substantially more to the increased species density and diversity than did bryophytes. Ten plant communities were recognized within the study area. All of them belong to the Antarctic cryptogam tundra formation; they were grouped into four subformations: fruticose lichen and moss cushion subformation, crustose lichen subformation, moss carpet subformation and moss hummock subformation. The moss turf subformation was not found on this region. The Antarctic herb tundra formation was also not found; however, the populations of both Antarctic vascular plants have rapidly expanded around Barton Peninsula in recent years, which may allow development of the Antarctic herb tundra formation in the future.  相似文献   

5.
The major physiognomic and ecological categories of the lichen-rich, epigeic communities in the boreal (taiga) and arctic (tundra) zones are defined and their syntaxonomy and ecology in Europe, Asia and North America is reviewed. In the boreal and hemiarctic areas open, dry, acidophytic lichen woodlands are widespread, especially on sandy habitats. Their epigeic lichen synusiae are usually dominated by four fruticoseCladina species, being extremely homogeneous in species composition and structure throughout the boreal zone, while the dominant trees and the other vascular plant flora of the woodlands are geographically more variable. No phytosociological classification system exists that would cover most of these communities over the circumpolar regions. Very similar communities, though much more poorly known, are found on thin soils over Precambrian rock outcrops. Other sites to produce epigeic lichen communities include open sand dunes, treeless heathlands, drier bogs and many seral stages, like those on road banks. Boreal lichen-rich communities on eutrophic soils may be developed in semiarid regions, in particular. In the Arctic, lichens are common in most communities, and the driest ones are regularly lichen-dominated, whether acidophytic or eutrophytic, chionophytic or achionophytic. Detailed syntaxonomic systems for their classification have been developed, especially in Greenland and Scandinavian mountains (in oroarctic zones in the latter regions). The richest fruticose lichen areas are in continental, hemiarctic timberline regions in northern Siberia and Canada. The southern and middle arctic subzones are also characterized by many macrolichens, such asCetraria cucullata, C. nivalis, Alectoria ochroleuca, andThamnolia vermicularis, but everywhere also small, crustose lichens are common on soil, such asRinodina turfacea andLopadium pezizoideum, which are often overlooked in vegetation analyses. The presence of microlichens and the formation of mosaic micropatterns of soil lichen communities is particularly typical of the northern arctic subzone. The conservation problems of the boreal and arctic lichen communities include overgrazing by reindeer or caribou, which has caused delichenization in some regions, extensive forest and tundra fires, use of heavy transport vehicles in forestry and tundra operations, and, locally, heavy industrial air pollution.  相似文献   

6.
Alpha and beta diversities of the bacterial communities growing on rock surfaces, proto-soils, riparian sediments, lichen thalli, and water springs biofilms in a glacier foreland were studied. We used three molecular based techniques to allow a deeper investigation at different taxonomic resolutions: denaturing gradient gel electrophoresis, length heterogeneity-PCR, and automated ribosomal intergenic spacer analysis. Bacterial communities were mainly composed of Acidobacteria, Proteobacteria, and Cyanobacteria with distinct variations among sites. Proteobacteria were more represented in sediments, biofilms, and lichens; Acidobacteria were mostly found in proto-soils; and Cyanobacteria on rocks. Firmicutes and Bacteroidetes were mainly found in biofilms. UniFrac P values confirmed a significant difference among different matrices. Significant differences (P < 0.001) in beta diversity were observed among the different matrices at the genus–species level, except for lichens and rocks which shared a more similar community structure, while at deep taxonomic resolution two distinct bacterial communities between lichens and rocks were found.  相似文献   

7.
Summary Morphological and cultural studies on two new species ofConidiobolus isolated from plant detritus in India are described.C. terrestris is characterized by mycelium differentiating into chains of hyphal bodies, which in older cultures become thick-walled. The morphological similarity of the fungus to the causal organism of Jorge Lobo's disease in Surinam incited byLoboa loboi and the possibility of that being a species ofConidiobolus are discussed.C. lichenicola isolated from decaying lichens is characterized by a vegetative thallus composed of sinuous, lobate and compacted coralloid mycelial mass. The conidial germination is characteristic and organises the coralloid thallus from the very initial stages.  相似文献   

8.
This work describes the rhizomorphs and their relation to thallus development in the squamulose lichen Aspicilia crespiana Rico ined. The rhizomorphs capture algal cells, giving rise to new squamules terminally or laterally. The thallus thus consists of a network of lichenized squamules interlinked by mycobiontic rhizomorphs. A previously proposed comparison of lichen rhizomorphs to the prothallus (hypothallus) of crustose lichens is applied and expanded upon. Other less organized prothallic structures sometimes produced by A. crespiana are also described. The importance of lichenizing rhizomorphs as an essential feature of thallus growth in this species is emphasized and a competitive role in substrate occupation and thallus expansion is suggested.  相似文献   

9.
The profound knowledge of the structural and chemical characteristics of the interface between lichen thallus and rock, seems to be indispensable for the process of understanding the lichen symbiosis as well as the significance of the weathering action of lichens. One of the most promising techniques to be used in this investigation is the Scanning Electron Microscopy (SEM) in the back-scattered electron (BSE) emission mode. In the present work thalli of Parmelia conspersa, Aspicilia intermutans and Lecidea auriculata growing in granitic rock were examined by SEM in BSE mode with (Energy Dispersive Spectroscopy) EDS. In the case of the foliose thalli the observation of the interface permits detection of the rhizine/hyphae adherence and determination of the origin of the minerals which adhere to the rhizine/hyphae. In the case of the crustose thalli BSE permits investigation within the ultrastructure of the crustose thallus and crustose lichen-rock contact zone and also allows observations of the penetration and filling of the fissures and cracks of the underlying rock by components of the thallus and other living organisms. The BSE images could contribute to a better knowledge of the cytological state of the rock-inhabiting organisms and also to the understanding of the action of the chemical treatments used in the removal of lichen from building materials.  相似文献   

10.
Manganese oxyhydroxides have been found deposited on the surface of the lichen Catillaria chalybeia on an altered rhodochrosite. It is suggested that the Mn was mobilised from the ore surface via surface-weathering and redeposited in the thallus. The lichen Acarospora smaragdula also grew upon the ore but showed no sign of Mn deposition. Nine further lichens and two bryophytes were also found on the ore.  相似文献   

11.
The lichens, Nephroma expallidum (Nyl.) Nyl. and N. arcticum (L.) Torss., consistently have at least two symbionts in a single thallus: a green alga in the algal layer and a blue-green alga in the internal cephalodia. The cephalodia originate from algal cells in contact with the lower surface of the lichen, in the zone of rhizine formation. The rhizines surround the epiphytic algal colony and form a second cortical layer; following dissociation of the original lower cortex, further growth of the two organisms results in the cyanophyte colony being enveloped by a compact layer of fungal tissue and positioned in the lichen medulla. The colony may eventually assume a superior or inferior position in relation to the lichen thallus, depending in part on the lichen species. Nephroma anticum may have two distinct morphological forms of blue-green algae in the same thallus and occasionally in the same cephalodium. It appears that the relationship that exists between the cephalodial algae and the lichen thallus is antagonistic and results, in some cases, in the exclusion of the green algal layer and death to the cephalodial cyanophytes.  相似文献   

12.
Relationships between growth, nitrogen and concentration of unique biont components were investigated for the tripartite lichens Nephroma arcticum (L.) Torss. and Peltigera aphthosa (L.) Willd. Nitrogen availability was manipulated during 4 summer months by removing cephalodia and their associated N2 fixation activity, or by weekly irrigation with NH4NO3. Chlorophyll and ribulose 1·5‐biphosphate carboxylase/oxygenase (Rubisco), and chitin and ergosterol were used as photobiont and mycobiont markers, respectively. Nitrogen concentrations were similar in older and newer parts of the same thallus, varying between 2 and 5 g m?2, with P. aphthosa having higher concentrations than N. arcticum. Both chlorophyll (Chl a) and chitin were linearly correlated with thallus N, but N. arcticum invested more in fungal biomass and had lower Chl a concentrations in comparison with P. aphthosa at equal thallus N. During the 4 months, control and N‐fertilized thalli of N. arcticum increased in area by 0·2 m2 m?2 and P. aphthosa by 0·4 m2 m?2. Thallus expansion was significantly inhibited in samples without cephalodia, but there was no effect on lichen weight gain. Mean relative growth rate (RGR; mg g?1 d?1) was 3·8 for N. arcticum and 8·4 for P. aphthosa, when time (d) reflected the lichen wet periods. RGR was 2–3 times lower when based on the whole time, i.e. when including dry periods. The efficiency (e) of converting incident irradiance into lichen biomass was positively and linearly correlated with thallus Chl a concentration to the same extent in both species. The slower growth rates of N. arcticum, in comparison with P. aphthosa, could then be explained by their lower nitrogen and Chl a concentrations and a subsequently lower light energy conversion efficiency. Functional and dynamic aspects of resource allocation patterns of the two lichens are discussed in relation to the above findings.  相似文献   

13.

Background and Aims

Cyanolichens are usually stated to be bipartite (mycobiont plus cyanobacterial photobiont). Analyses revealed green algal carbohydrates in supposedly cyanobacterial lichens (in the genera Pseudocyphellaria, Sticta and Peltigera). Investigations were carried out to determine if both cyanobacteria and green algae were present in these lichens and, if so, what were their roles.

Methods

The types of photobiont present were determined by light and fluorescence microscopy. Small carbohydrates were analysed to detect the presence of green algal metabolites. Thalli were treated with selected strengths of Zn2+ solutions that stop cyanobacterial but not green algal photosynthesis. CO2 exchange was measured before and after treatment to determine the contribution of each photobiont to total thallus photosynthesis. Heterocyst frequencies were determined to clarify whether the cyanobacteria were modified for increased nitrogen fixation (high heterocyst frequencies) or were normal, vegetative cells.

Key Results

Several cyanobacterial lichens had green algae present in the photosynthetic layer of the thallus. The presence of the green algal transfer carbohydrate (ribitol) and the incomplete inhibition of thallus photosynthesis upon treatment with Zn2+ solutions showed that both photobionts contributed to the photosynthesis of the lichen thallus. Low heterocyst frequencies showed that, despite the presence of adjacent green algae, the cyanobacteria were not altered to increase nitrogen fixation.

Conclusions

These cyanobacterial lichens are a tripartite lichen symbiont combination in which the mycobiont has two primarily photosynthetic photobionts, ‘co-primary photobionts’, a cyanobacterium (dominant) and a green alga. This demonstrates high flexibility in photobiont choice by the mycobiont in the Peltigerales. Overall thallus appearance does not change whether one or two photobionts are present in the cyanobacterial thallus. This suggests that, if there is a photobiont effect on thallus structure, it is not specific to one or the other photobiont.  相似文献   

14.
Many lichens show seriously depressed net photosynthesis (NP) at high thallus water contents due to increased carbon dioxide diffusion resistance through blockage of diffusion pathways by water. The soil lichen Diploschistes muscorum, however, shows no depression and NP is close to maximal even at the highest thallus water content. We investigated whether lichen substances (lecanoric and diploschistesic acids) in the cortex and medulla contributed to this ability to maintain high NP. Dry thalli were extracted with water-free acetone and, after this treatment, were found to be fully viable to the extent of continued growth after replanting in the field. No differences were found in the response of NP to thallus water content between the normal and extracted thalli, in fact the response curves were often nearly identical. Thus, in this species it seems that lichen substances did not maintain the water-free diffusion pathways and some other explanation, possibly structural, needs to be sought. Received: 5 April 1997 / Accepted: 26 April 1997  相似文献   

15.
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well‐known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long‐term (9–16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2‐fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.  相似文献   

16.
The two endolithic lichen species Hymenelia prevostii and Hymenelia coerulea were investigated with regard to their thallus morphology and their effects on the surrounding substrate. The physiological processes responsible for the observed alterations of the rock were identified. Whereas the thallus surface of H. coerulea was level, H. prevostii formed small depressions that were deepest in the thallus center. In a cross‐section, both species revealed an algal zone consisting of algal cavities parallel to the substrate surface and a fungal zone below. However, H. prevostii revealed significantly larger cavities with more than twice the cell number and a denser pattern of cavities than H. coerulea, resulting in a biomass per surface area being more than twice as large. Below H. prevostii the layer of macroscopically visibly altered rock material was about twice as deep and within this layer, the depletion of calcium and manganese was considerably higher. In simultaneous measurements of the oxygen uptake/oxygen release and pH shift, the isolated algal strains of both lichens revealed respiration‐induced acidification of the medium in the dark. At higher light intensities, H. coerulea and to a lesser extent also H. prevostii alkalized the medium which may lessen the acidification effect somewhat under natural conditions. In a long‐term growth experiment, the isolated algal strains of both lichens revealed acidification of the medium to a similar extent. Neither acidic lichen substances nor oxalic acid was identified. The significant differences between the weathering patterns of both species are based on the same respiration‐induced acidification mechanism, with H. prevostii having a greater effect due to its higher biomass per area.  相似文献   

17.
Predicted elevated temperatures and a shift from a winter to summer rainfall pattern associated with global warming could result in the exposure of hydrated lichens during summer to more numerous temperature extremes that exceed their thermal thresholds. This hypothesis was tested by measuring lethal temperature thresholds under laboratory and natural conditions for four epilithic lichen species (Xanthoparmelia austro‐africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta) occurring on quartz gravel substrates at a hot arid inland site two epigeous lichen species (Teloschistes capensis, Ramalina sp.) occurring on gypsum‐rich topsoil at a warm humid coastal site. Extrapolated lethal temperatures for photosynthetic quantum yield under laboratory conditions were up to 4°C higher for lichens from a dry inland site than those from a humid coastal site. Lethal temperatures extrapolated for photosynthetic quantum yield at a saturating photosynthetic photon flux density of ≥11,000 μmol photons m?2 s?1 under natural conditions were up to 6°C higher for lichens from the dry inland site than the more humid coastal site. It is concluded that only under atypical conditions of lichen exposure in a hydrated state to temperature extremes at high midday solar irradiances during summer could lethal photosynthetic thresholds in sensitive lichen species be potentially exceeded, but whether the increased frequency of such conditions with climate warming would lead to increased likelihood of lichen mortality is debatable.  相似文献   

18.
Nitrogen (N) deposition has increased globally over the last 150 years and further increases are predicted. Epiphytic lichens decline in abundance and diversity in areas with high N loads, and the abundance of lichens decreases along gradients of increased deposition. Thus, although N is an essential nutrient for lichens, excessive loads may be detrimental for them. However, these gradients include many correlated pollutants and the mechanisms behind the decline are thus poorly known. The aim of this study was to assess effects of N deposition, alone, on the epiphytic lichen community composition in a naturally N‐poor boreal forest. For this purpose, whole spruce trees were fertilized daily with N at five levels, equivalent to 0.6, 6, 12.5, 25, and 50 kg N ha?1 yr?1, during four consecutive growing seasons (2006–2009), and changes in the abundance of lichens were monitored each autumn from the preceding year (2005). The studied lichen communities were highly dynamic and responded strongly to the environmental perturbation. N deposition detectably altered the direction of succession and reduced the species richness of the epiphytic lichen communities, even at the lowest fertilization application (6 kg N ha?1 yr?1). The simulated N deposition caused significant changes in the abundance of Alectoria sarmentosa, Bryoria spp., and Hypogymnia physodes, which all increased at low N loads and decreased at high loads, but with species‐specific optima. The rapid decline of A. sarmentosa may have been caused by the added nitrogen reducing the stability of the lichen thalli, possibly due to increases in the photobiont: mycobiont ratio or parasitic fungal attacks. We conclude that increases in nitrogen availability, per se, could be responsible for the reductions in lichen abundance and diversity observed along deposition gradients, and those community responses may be due to physiological responses of the individual species rather than changes in competitive interactions.  相似文献   

19.
The growth of lichens in the field is slow and their cultivation is generally thought to be difficult. We studied the effects of environmental conditions and culture solutions on the growth of a lichen, and found that growth ofParmotrema tinctorum (Nyl.) Hale in growth cabinets was possible. The thallus area increased by about 20% monthly when the lichen was soaked in a culture solution for 90 min every four days and then grown at 100% relative humidity when the temperature in the growth cabinet was 20C and illumination was at 12 W/m2 for 16 hr daily.  相似文献   

20.
Bacterial communities associated with the lichen symbiosis   总被引:1,自引:0,他引:1  
Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号