首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To monitor the levels of caffeic acid in rat blood, an on-line microdialysis system coupled with liquid chromatography was developed. The microdialysis probe was inserted into the jugular vein/right atrium of male Sprague-Dawley rats. Caffeic acid (100 mg/kg, i.v.) was then administered via the femoral vein. Dialysates were automatically injected onto a liquid chromatographic system via an on-line injector. Samples were eluted with a mobile phase containing methanol–100 mM monosodium phosphoric acid (35:65, v/v, pH 2.5). The UV detector wavelength was set at 320 nm. The detection limit of caffeic acid was 20 ng/ml. The in vivo recoveries of the microdialysis probe for caffeic acid at 0.5 and 1 μg/ml were 48.34±2.68 and 47.64±3.43%, respectively (n=6). Intra- and inter-assay accuracy and precision of the analyses were ≤10% in the range of 0.05 to 10 μg/ml. Pharmacokinetics analysis of results obtained using such a microdialysis–chromatographic method indicated that unbound caffeic acid in the rat fitted best to a biexponential decay model.  相似文献   

2.
Tsai TH  Shum AY  Chen CF 《Life sciences》2000,66(4):363-370
A system consisting of a hepato-duodenal shunt in which the bile of a drug-treated donor rat was diverted to the duodenum of an untreated recipient rat via a bile cannula was used to assess the role of hepatic metabolism and enterohepatic circulation in the pharmacokinetics of chloramphenicol. Blood concentrations of unbound chloramphenicol and its glucuronide were measured by on-line microdialysis coupled to a microbore liquid chromatographic system. Results indicated that chloramphenicol and its glucuronide were detected in the blood of both donor and recipient rats following an intravenous 100 mg/kg dose of chloramphenicol succinate to the donor rat. Our finding suggests that although enterohepatic circulation contributed only to a minor extent (approximately 1.8%) was involved in the disposition of unbound chloramphenicol in the rat on-line microdialysis techniques were applicable for such studies.  相似文献   

3.
A reversed-phase high-performance liquid chromatographic method was developed to quantify a decapeptide anticoagulant in rat and monkey plasma. The compound and internal standard, a nonapeptide analogue, were extracted from plasma with an amino solid-phase extraction column with an extraction efficiency in the range 75–90%. A C18 analytical column was used to separate the analytes by gradient elution followed by ultraviolet detection at 215 nm. Quantification of the decapeptide over the concentration range 0.1–10.1 μg/ml resulted in an assay relative error and relative standard deviation both less than 10%. The anticoagulant decapeptide was stable in both rat and monkey plasma frozen at −20°C.  相似文献   

4.
A reversed-phase high-performance liquid chromatographic method for the determination of the enantiomers of atenolol in rat hepatic microsome has been developed. Racemic atenolol was extracted from alkalinized rat hepatic microsome by ethyl acetate. The organic layer was dried with anhydrous sodium sulfate and evaporated using a gentle stream of air. Atenolol racemic compound was derivatized with 2,3,4,6-tetra-O-acetyl-β- -glycopyranosyl isothiocyanate at 35°C for 30 min to form diastereomers. After removal of excess solvent, the diastereomers were dissolved in phosphate buffer (pH 4.6)–acetonitrile (50:30). The diastereomers were separated on a Shimadzu CLC-C18 column (10 μm particle size, 10 cm×0.46 cm I.D.) with a mobile phase of phosphate buffer–methanol–acetonitrile (50:20:30, v/v) at a flow-rate of 0.5 ml/min. A UV–VIS detector was operated at 254 nm. For each enantiomer, the limit of detection was 0.055 μg/ml (signal-to-noise ratio 3) and the limit of quantification (signal-to-noise ratio 10) was 0.145 μg/ml (RSD <10%). In the range 0.145–20 μg/ml, intra-day coefficients of variation were 1.0–7.0% and inter-day coefficients of variation were 0.4–16.5% for each enantiomer. The assay was applied to determine the concentrations of atenolol enantiomers in rat hepatic microsome as a function of time after incubation of racemic atenolol.  相似文献   

5.
On-line microdialysis coupled with microbore liquid chromatography was used to investigate the pharmacokinetics of chloramphenicol and its glucuronide in rat blood. A microdialysis probe was inserted into a jugular vein of male Sprague–Dawley rats. Chloramphenicol succinate (20 mg/kg, intravenously) was then administered via a femoral vein. Dialysates were automatically injected onto a LC system, via an on-line injector. Samples were eluted with a mobile phase containing acetonitrile-10 mM monochloroacetic acid (30:70, v/v, pH 3.0). The UV detector wavelength was set at 278 nm. The limit of quantitation for chloramphenicol was 10 ng/ml. The in vitro recoveries of chloramphenicol and chloramphenicol glucuronide at 500 ng/ml were 32.2±0.3% and 11.4±0.7%, respectively (n=6). Intra- and inter-assay accuracy and precision of the analyses were ≤10% in the range of 0.01 to 5.0 μg/ml.  相似文献   

6.
To circumvent the need for laborious sample clean-up and multiple blood sampling, a system was developed consisting of on-line microdialysis coupled to microbore liquid chromatography and ultraviolet detection. The system was designed for the simultaneous and continuous monitoring of unbound blood and brain cephalexin in the rat following single bolus intravenous administrations (10 mg/kg, n=6). Microdialysis probes were inserted into the jugular vein and brain striatum, respectively, for blood and brain sampling. Chromatographic conditions consisted of a mobile phase of methanol–100 mM monosodium phosphoric acid (20:80, v/v, pH 5.0) pumped through a microbore reversed-phase column at a flow-rate of 0.05 ml/min. Detection wavelength was set at 260 nm. The method was validated for response linearity as well as intra- and inter-day variabilities. Rapid appearance of cephalexin in the striatal dialysate suggested good blood–brain barrier penetration. This study provided pharmacokinetics information for cephalexin as well as demonstrated the applicability of this continuous sampling method for pharmacokinetics studies.  相似文献   

7.
An assay, based on pre-column derivatization and micro-high-performance liquid chromatography–tandem mass spectrometry, was developed for the determination of the GABAB agonist CGP 44532 in rat plasma. CGP 44532, a highly polar 3-amino-2(S)-hydroxypropylmethylphosphinic acid, presented difficulties in developing a chromatographic method for the analysis of the compound in rat plasma. Instead of analyzing the target compound directly, it was derivatized prior to separation to a 4-nitrobenzylcarbamate isopropyliden derivative. In order to reach the required quantitation limit, on-line solid-phase extraction was utilized for sample clean-up and reversed-phase micro-column high-performance liquid chromatography, for separation of the plasma samples. The separated compounds were detected by negative electrospray tandem mass spectrometry in selected reaction monitoring mode. The derivatives show good chromatographic and mass spectrometric properties and both the target compound and the internal standard, could be eluted as symmetrical peaks with good signal/noise ratio. The MS–MS detection was selective and sensitive due to the straight fragmentation pattern. After injection of 200-μl sample aliquots, the limit of quantification was 10 ng ml−1. The analytical assay is useable in the range of 10–500 ng ml−1.  相似文献   

8.
An isocratic high-performance liquid chromatographic method with ultraviolet detection was utilized for the investigation of the pharmacokinetics of naringenin and its glucuronide conjugate in rat plasma and brain tissue. Plasma and brain tissue were deproteinized by acetonitrile, then centrifuged for sample clean-up. The drugs were separated by a reversed-phase C18 column with a mobile phase consisting of acetonitrile–orthophosphoric acid solution (pH 2.5–2.8) (36:64, v/v). The detection limits of naringenin in rat plasma and brain tissue were 50 ng/ml and 0.4 μg/g, respectively. The glucuronide conjugate of naringenin was evaluated by the deconjugated enzyme β-glucuronidase. The naringenin conjugation ratios in rat plasma and brain tissue were 0.86 and 0.22, respectively, 10 min after naringenin (20 mg/kg, i.v.) administration. The mean naringenin conjugation ratio in plasma was approximately four fold that in brain tissue.  相似文献   

9.
A single solvent extraction step high-performance liquid chromatographic method is described for quantitating clozapine and its metabolite, N-desmethylclozapine, in rat serum microsamples (50 μl). The separation used a 2.1-mm I.D. reversed-phase Symmetry C18 column with an isocratic mobile phase consisting of methanol–acetonitrile–28.6 mM sodium acetate buffer, pH 2.6 (10:20:70, v/v/v). The detection limit was 2.5 ng/ml for all the compounds using an ultraviolet detector operated at 230 nm. The method was used to study the pharmacokinetics of clozapine after an intravenous bolus dose (2.5 mg/kg).  相似文献   

10.
A high-performance liquid chromatographic method for the determination of a new thymidine phosphorylase inhibitor, TPI, in dog and rat plasma is described. TPI was isolated from biological samples by solid-phase extraction on Bond Elut PRS columns. Chromatographic separation was achieved on a C18 column using a mobile phase consisting of acetonitrile–10 mM acetate buffer (pH 4.3) including hexanesulfonate, with UV detection at 276 nm. This method has been validated across the range of 50–50 000 ng/ml using a 0.1-ml plasma volume. The mean recoveries from spiked plasma were 93% for dog and 94% for rat, respectively. The accuracy, precision and specificity of the method were demonstrated to be acceptable, and it was applied to the toxicokinetic study of TPI in rats.  相似文献   

11.
A rapid, sensitive and reproducible reversed-phase high-performance liquid chromatographic assay was developed for the determination of norfloxacin. Following protein precipitation with 10% trichloroacetic acid, norfloxacin and the internal standard enoxacin were extracted from plasma with chloroform, dried and reconstituted in the mobile phase. The chromatographic separation of norfloxacin and the internal standard enoxacin was achieved on a C8 column with fluorescence detection set at 280 and 418 nm for excitation and emission, respectively. The peaks with a resolution factor greater than 1.5 were free from interferences. Excellent linearity (r2 0.998) was observed over the concentration range 0.025–5.0 μg/ml in plasma. The inter-assay variability was 13.6% or less at all concentrations examined. The suitability of the assay for pharmacokinetic studies was determined by measuring norfloxacin concentration in rat plasma after administration of a single intravenous 10 mg/kg dose.  相似文献   

12.
S-Adenosyl-l-methionine (SAM) is a methyl-donor compound which is actively involved in a variety of biochemical reactions. An assay has been developed permitting the quantitative measurement of SAM and its related metabolites (S-adenosylhomocysteine, decar☐ylated SAM, methylthioadenosine, adenosine and adenine) in liver and cell cultures. As gradient reversed-phase chromatographic or cation-exchange chromatographic methods often resulted in overlapping peaks, a two-dimensional high-performance liquid chromatographic (HPLC) procedure was developed involving gradient reversed-phase chromatographic separation followed by ion-exchange chromatography. After precipitating large molecules in the sample by perchloric acid, gel permeation was carried out on a Sephadex G 25 column to separate small water-soluble metabolites from proteins and membrane fragments. The freeze-dried sample was injected onto an ODS column and a 0–10% acetonitrile gradient in 10 m M ammonium formate buffer (pH 2.9) (20 min, linear) was applied. The relevant fractions were collected and injected onto a cation-exchange column (Partisil SCX, 10 μm, 250 mm × 4.6 mm I.D.). Elution and quantification were carried out using ammonium formate buffers of various concentration (15–400 m M), pH 2.9. The detector response (254 nm) as a function of concentration was linear over the concentration range 30–500 pmol. The detection limits of the compounds after the two-dimensional chromatographic procedure ranged from 10 to 60 pmol and the recovery was higher than 70%. The reproducibility of the results obtained from given samples was within 9–22% for rat liver and 6–24% for mast cells.  相似文献   

13.
A simple high-performance liquid chromatographic method was developed to study the pharmacokinetics of dicentrine in rat plasma after 10 mg/kg intravenous administration. After addition of an internal standard (coumarin), plasma was deproteinized by acetonitrile for sample clean-up. The drugs were separated on a reversed-phase Nucleosil C18 column (250 × 4 mm I.D., particle size 5 μm) and detected by photodiode-array detection at a wavelength of 308 nm. Acetonitrile-water (35:65, v/v, pH 2.5–2.8, adjusted with orthophosphoric acid) was used as the mobile phase. A biphasic phenomenon with a rapid distribution followed by a slower elimination phase was observed from the plasma concentration-time curve.  相似文献   

14.
An in vivo microdialysis sampling method coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed for continuous simultaneous monitoring of unbound baicalin in rat blood and brain. Microdialysis probes were inserted into the jugular vein and brain cerebrospinal fluid (CSF) of Sprague-Dawley rats then, following administration of baicalin at doses of 24mg/kg via the candal vein, samples were collected every 20min and injected directly into the UPLC-MS/MS system. In vitro recoveries of the probes were 19.26% and 18.38%, while in vivo recoveries of the probes were 15.0% and 17.52% for blood and brain, respectively. This improved method offers a rapid quantitative procedure for the determination of baicalin with a retention time of only 1.6min. The lower limit of quantification (LLOQ) and the lower limit of detection (LLOD) based on a signal-to-noise ratio of 5 were 2.37 and 0.1ng/ml for anticoagulant citrate dextrose (ACD) solution, and 1.185 and 0.3ng/ml for artificial cerebrospinal fluid (aCSF), respectively. The pharmacokinetics results indicated that baicalin could pass through the blood-brain barrier (BBB) and was detectable in brain dialysate. These in vivo microdialysis-based measurements provide a technique for simple sampling and rapid sensitive analysis of unbound baicalin in rat blood and CSF and for further application in pharmacokinetic studies.  相似文献   

15.
A high-performance liquid chromatographic (HPLC) procedure has been developed for the quantification of L-365,260 (I), a cholecystokinin and gastrin receptor antagonist, in dog and rat plasma. The method involves liquid—liquid extraction and HPLC with ultraviolet detection. Standard curves were linear over the range 7.5–2000 ng/ml for rat and dog plasma. The method is reproducible and reliable with a detection limit of 7.5 ng/ml in biological fluids. The mean coefficients of variation for concentrations within the range of the standard curve range were 3.84 and 2.56%, respectively, for intra-day analysis and 4.48 and 4.26%, respectively, for inter-day analysis. Application of the development was successfully demonstrated by quantifying the concentration of I in both dog and rat plasma samples following an intravenous or oral dose of 5 mg/kg I.  相似文献   

16.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of a new oral thrombin inhibitor (compound I) in the blood of rats and dogs. The analyte was deproteinized with a 1.5 volume of methanol and a 0.5 volume of 10% zinc sulfate, and the supernatant was injected into a 5-μm Capcell Pak C18 column (150×4.6 mm I.D.). The mobile phase was a mixture of acetonitrile and 0.2% triethylamine of pH 2.3 (31:69, v/v) with a flow-rate of 1.0 ml/min at UV 231 nm. The retention time of compound I was approximately 9.3 min. The calibration curve was linear over the concentration range of 0.05–100 mg/l for rat blood (r2>0.9995, n=6) and dog blood (r2>0.9993, n=6). The limit of quantitation was 0.05 mg/l for both bloods using a 100-μl sample. For the 5 concentrations (0.05, 0.1, 1, 10, and 100 mg/l), the within-day recovery (n=4) and precision (n=4) were 98.1–104.1% and 1.5–6.8% for rat blood and 95.4–105.7% and 1.4–5.3% for dog blood, respectively. The between-day recovery (n=6) and precision (n=6) were 99.8–105.3% and 3.7–12.6% for rat blood and 87.5–107.1% and 2.9–15.3% for dog blood, respectively. The absolute recoveries were 82.4–93.3%. No interferences from endogenous substances were observed. In conclusion, the presented simple, sensitive, and reproducible HPLC method proved and was used successfully for the determination of compound I in the preclinical pharmacokinetics.  相似文献   

17.
A high-performance liquid chromatographic (HPLC) procedure has been developed for the quantification of Melanotan-II (MT-II), a cyclic heptapeptide which promotes rapid tanning of the skin, in rat plasma. The method involves precipitation of plasma proteins followed by direct-injection HPLC with ultraviolet detection. Calibration curves were linear over the range 100–1000 ng/ml for rat plasma. The method is reproducible and reliable with a detection limit of 50 ng/ml in plasma. Within- and between-day precision and accuracy reported as coefficient of variation and relative error, respectively, were < 7%. The application of the assay was successfully demonstrated by quantifying the concentration of MT-II in rat plasma samples following an intravenous dose of 0.3 mg/kg.  相似文献   

18.
A sensitive high-performance liquid chromatographic assay has been developed and validated for the determination of methyl N-[5-[[4-(2-pyridinyl)-1-piperazinyl]carbonyl]-1H-benzimidazol-2-yl] carbamate (CDRI compound 81/470) in normal rat blood. The method described herein is simple, with improved selectivity and sensitivity over a previously reported HPLC method. The limit of quantitation is 10 ng/ml (method 1) and 2.5 ng/ml (method 2) in blood, as compared with 40 ng/ml for the previous method. The standard curve in blood is linear over the concentration range 10–1000 ng/ml in method 1 and 2.5–1000 ng/ml in method 2 and the extraction recovery is higher than 80% for both methods.  相似文献   

19.
A sensitive and quantitative gas chromatographic assay for the determination of 18β-glycyrrhetinic acid (18β-GA), the main metabolite of glycyrrhizin after oral licorice consumption in human urine, has been developed and validated. For the extraction of 18β-GA from urine two Sep-Pak C18 extractions, hydrolysis with Helix pomatia and three liquid–liquid extractions were performed, using 18α-glycyrrhetinic acid (18α-GA) as internal standard. Both 18β-GA and internal standard were converted into their pentafluorobenzyl-ester/trimethylsilyl-ether derivatives and detected by flame ionization detection using a WCOT-fused-silica capillary column. Good quality control data were obtained in precision and accuracy tests. The detection limit of the gas chromatographic method was 10 μg/l with a urine volume of 10 ml. A detection limit of 3 μg/l was obtained by performing GC–MS. The GC method was used to monitor the urinary excretion of 18β-GA after licorice consumption by two healthy volunteers and a patient suspected of licorice abuse. Furthermore, it was shown that this GC assay enables to detect other metabolites related to licorice consumption.  相似文献   

20.
A simple and selective high-performance liquid chromatographic method is described for the analysis of the cephalosporins cefotexime (CXM), desacetylcefotaxime (DACXM) and ceftriaxone (CFX) in rat plasma. Plasma was deproteinized with methanol, and the supernatant was directly injected into the chromatograph and monitored at 254 nm. For determination of the unbound drugs, a centrifugal ultrafiltration method was employed. The calibration curves were linear (r=0.999) from 2.5 to 500 μg/ml; the detection limits were 100 ng/ml for DACXM and 250 ng/ml for CXM and CFX. The method was not interfered with by other plasma components, nor by barbital sodium or caffeine, and has been applied to study the pharmacokinetics of the cephalosporins in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号