首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3′-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS elements encoded in the human genome. Surprisingly, the SECIS elements displayed a wide range of UGA recoding activities, spanning several 1000-fold in vivo and several 100-fold in vitro. The difference in activity between a representative strong and weak SECIS element was not explained by differential binding affinity of SECIS binding Protein 2, a limiting factor for selenocysteine incorporation. Using chimeric SECIS molecules, we identified the internal loop and helix 2, which flank the kink-turn motif, as critical determinants of UGA recoding activity. The simultaneous presence of a GC base pair in helix 2 and a U in the 5′-side of the internal loop was a statistically significant predictor of weak recoding activity. Thus, the SECIS contains intrinsic information that modulates selenocysteine incorporation efficiency.  相似文献   

2.
3.
Decoding apparatus for eukaryotic selenocysteine insertion   总被引:14,自引:0,他引:14       下载免费PDF全文
Decoding UGA as selenocysteine requires a unique tRNA, a specialized elongation factor, and specific secondary structures in the mRNA, termed SECIS elements. Eukaryotic SECIS elements are found in the 3′ untranslated region of selenoprotein mRNAs while those in prokaryotes occur immediately downstream of UGA. Consequently, a single eukaryotic SECIS element can serve multiple UGA codons, whereas prokaryotic SECIS elements only function for the adjacent UGA, suggesting distinct mechanisms for recoding in the two kingdoms. We have identified and characterized the first eukaryotic selenocysteyl-tRNA-specific elongation factor. This factor forms a complex with mammalian SECIS binding protein 2, and these two components function together in selenocysteine incorporation in mammalian cells. Expression of the two functional domains of the bacterial elongation factor–SECIS binding protein as two separate proteins in eukaryotes suggests a mechanism for rapid exchange of charged for uncharged selenocysteyl-tRNA–elongation factor complex, allowing a single SECIS element to serve multiple UGA codons.  相似文献   

4.
Donovan J  Copeland PR 《PloS one》2012,7(4):e35581
The amino acid selenocysteine (Sec) is encoded by UGA codons. Recoding of UGA from stop to Sec requires a Sec insertion sequence (SECIS) element in the 3' UTR of selenoprotein mRNAs. SECIS binding protein 2 (SBP2) binds the SECIS element and is essential for Sec incorporation into the nascent peptide. SBP2-like (SBP2L) is a paralogue of SBP2 in vertebrates and is the only SECIS binding protein in some invertebrates where it likely directs Sec incorporation. However, vertebrate SBP2L does not promote Sec incorporation in in vitro assays. Here we present a comparative analysis of SBP2 and SBP2L SECIS binding properties and demonstrate that its inability to promote Sec incorporation is not due to lower SECIS affinity but likely due to lack of a SECIS dependent domain association that is found in SBP2. Interestingly, however, we find that an invertebrate version of SBP2L is fully competent for Sec incorporation in vitro. Additionally, we present the first evidence that SBP2L interacts with selenoprotein mRNAs in mammalian cells, thereby implying a role in selenoprotein expression.  相似文献   

5.
SECIS elements are stem-loop structures located in the 3' untranslated regions (UTRs) of eukaryotic selenoprotein mRNAs that are required for directing cotranslational selenocysteine incorporation at UGA codons. In prokaryotes, stem-loops mediating selenocysteine incorporation are located immediately downstream of the UGA selenocysteine codon, in the coding region. Previous characterization studies of the mammalian SECIS elements of type 1 deiodinase, glutathione peroxidase, and selenoprotein P showed that conserved nucleotides in the loops and unpaired bulges, and base pairing in the stems are required for SECIS function. These initial studies utilized approximately 175-230-nt segments of the 3'UTRs of the selenoprotein mRNAs. Here we define the minimal functional rat type 1 deiodinase SECIS element, a 45-nt segment, the 5' boundary of which corresponds precisely to the 5'-most critical conserved nucleotide identified previously. We also define base pairing requirements in the stem of this element. In view of the presence of SECIS elements in the open reading frames (ORFs) of bacterial selenoproteins, we examine the effects in the type 1 deiodinase of extending the ORF into the SECIS element, and find that this dramatically inhibits SECIS function. Finally, we define a minimal spacing requirement of 51-111 nt between a eukaryotic UGA selenocysteine codon and SECIS element.  相似文献   

6.
The amino acid selenocysteine is encoded by UGA, usually a stop codon, thus requiring a specialized machinery to enable its incorporation into selenoproteins. The machinery comprises the tRNASec, a 3′-UTR mRNA stem–loop termed SElenoCysteine Insertion Sequence (SECIS), which is mandatory for recoding UGA as a Sec codon, the SECIS Binding Protein 2 (SBP2), and other proteins. Little is known about the molecular mechanism and, in particular, when, where, and how the SECIS and SBP2 contact the ribosome. Previous work by others used the isolated SECIS RNA to address this question. Here, we developed a novel approach using instead engineered minimal selenoprotein mRNAs containing SECIS elements derivatized with photoreactive groups. By cross-linking experiments in rabbit reticulocyte lysate, new information could be gained about the SBP2 and SECIS contacts with components of the translation machinery at various translation steps. In particular, we found that SBP2 was bound only to the SECIS in 48S pre-initiation and 80S pretranslocation complexes. In the complex where the Sec-tRNASec was accommodated to the A site but transpeptidation was blocked, SBP2 bound the ribosome and possibly the SECIS element as well, and the SECIS had flexible contacts with the 60S ribosomal subunit involving several ribosomal proteins. Altogether, our findings led to broadening our understanding about the unique mechanism of selenocysteine incorporation in mammals.  相似文献   

7.
Co-translational insertion of selenocysteine (Sec) into proteins in response to UGA codons is directed by selenocysteine insertion sequence (SECIS) elements. In known bacterial selenoprotein genes, SECIS elements are located in the coding regions immediately downstream of UGA codons. Here, we report that a distant SECIS element can also function in Sec insertion in bacteria provided that it is spatially close to the UGA codon. We expressed a mammalian phospholipid hydroperoxide glutathione peroxidase in Escherichia coli from a construct in which a natural E.coli SECIS element was located in the 3′-untranslated region (3′-UTR) and adjacent to a sequence complementary to the region downstream of the Sec UGA codon. Although the major readthrough event at the UGA codon was insertion of tryptophan, Sec was also incorporated and its insertion was dependent on the functional SECIS element in the UTR, base-pairing potential of the SECIS flanking region and the Sec UGA codon. These data provide important implications into evolution of SECIS elements and development of a system for heterologous expression of selenoproteins and show that in addition to the primary sequence arrangement between UGA codons and SECIS elements, their proximity within the tertiary structure can support Sec insertion in bacteria.  相似文献   

8.
The genetic code, once thought to be rigid, has been found to permit several alternatives in its reading. Interesting alternative relates to the function of the UGA codon. Usually, it acts as a stop codon, but it can also direct the incorporation of the amino acid selenocysteine into a polypeptide. UGA-directed selenocysteine incorporation requires a cis-acting mRNA element called the "selenocysteine insertion sequence" (SECIS) that can form a stem-loop RNA structure. Here we discuss our investigation on the E. coli SECIS. This includes the follows: 1) The nature of the minimal E. coli SECIS. We found that in E. coli only the upper-stem and loop of 17 nucleotides of the SECIS is necessary for selenocysteine incorporation on the condition that it is located in the proper distance from the UGA [34]; 2) The upper stem and loop structure carries a bulged U residue that is required for selenocysteine incorporation [34] because of its interaction with SelB; and 3) We described an extended fdhF SECIS that includes the information for an additional function: The prevention of UGA readthrough under conditions of selenium deficiency [35]. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Finally, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium the SECIS enables one of two alternatives for the translational machinery: Either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.  相似文献   

9.
Selenocysteine is incorporated into proteins via "recoding" of UGA from a stop codon to a sense codon, a process that requires specific secondary structures in the 3' untranslated region, termed selenocysteine incorporation sequence (SECIS) elements, and the protein factors that they recruit. Whereas most selenoprotein mRNAs contain a single UGA codon and a single SECIS element, selenoprotein P genes encode multiple UGAs and two SECIS elements. We have identified evolutionary adaptations in selenoprotein P genes that contribute to the efficiency of incorporating multiple selenocysteine residues in this protein. The first is a conserved, inefficiently decoded UGA codon in the N-terminal region, which appears to serve both as a checkpoint for the presence of factors required for selenocysteine incorporation and as a "bottleneck," slowing down the progress of elongating ribosomes. The second adaptation involves the presence of introns downstream of this inefficiently decoded UGA which confer the potential for nonsense-mediated decay when factors required for selenocysteine incorporation are limiting. Third, the two SECIS elements in selenoprotein P mRNA function with differing efficiencies, affecting both the rate and the efficiency of decoding different UGAs. The implications for how these factors contribute to the decoding of multiple selenocysteine residues are discussed.  相似文献   

10.
11.
The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome. Here we show that ribosomal protein L30 is a component of the eukaryotic selenocysteine recoding machinery. L30 binds SECIS elements in vitro and in vivo, stimulates UGA recoding in transfected cells and competes with SBP2 for SECIS binding. Magnesium, known to induce a kink-turn in RNAs that contain two tandem G.A pairs, decreases the SBP2-SECIS complex in favor of the L30-SECIS interaction. We propose a model in which SBP2 and L30 carry out different functions in the UGA recoding mechanism, with the SECIS acting as a molecular switch upon protein binding.  相似文献   

12.
The UGA codon, usually a stop codon, can also direct the incorporation into a protein of the modified amino acid selenocysteine. This UGA decoding process requires a cis -acting mRNA element called 'selenocysteine insertion sequence' (SECIS) that can form a stem-loop structure. In Escherichia coli the SECIS of the selenoprotein formate dehydrogenase (FdhH) mRNA has been previously described to consist of at least 40 nucleotides following the UGA codon. Here we determined the nature of the minimal SECIS required for the in vivo UGA-directed selenocysteine incorporation in E.coli . Our study is based on extensive mutational analysis of the fdhF SECIS DNA located in a lac' Z fusion. We found that the whole stem-loop RNA structure of the E.coli fdhF SECIS previously described is not required for the UGA-directed selenocysteine incorporation in vivo . Rather, only its upper stem-loop structure of 17 nucleotides is necessary on the condition that it is located in a proper distance (11 nucleotides) from the UGA codon. Based on these observations, we present a new model for the minimal E.coli SECIS.  相似文献   

13.
In mammals, most of the selenium contained in their body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is normally recognized as a translational stop signal, it is intriguing how cells recognize and distinguish the UGA Sec codon from the UGA stop codon. In eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated Sec insertion sequence (SECIS) located in the 3'-untranslated regions is required for recognition of UGA as a Sec codon. Although some proteins (SBPs) have been reported to bind to SECIS, it is not clear how the SECIS element can mediate Sec insertion at UGA. Eukaryotic Sec-tRNA(Sec) is not recognized by elongation factor EF-1alpha, but is recognized specifically by a Sec-tRNA(Sec) protecting factor, SePF, in bovine liver extracts. In this study, we provide evidence that SePF is distinct from SBP by chromatography. Upon UV irradiation, the SECIS RNA was cross-linked to a 47.5 kDa protein, a likely candidate of SBP, that is contained in the complex with a molecular mass of 150 kDa. These results suggest that SBP and SePF play different roles for the Sec incorporation. To our knowledge, this is the first demonstration that SBP is discriminated from the factor which directly recognizes Sec-tRNA(Sec), providing a novel clue to the mechanism of selenocysteine decoding in eukaryotes.  相似文献   

14.
15.
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.  相似文献   

16.
Incorporation of the 21st amino acid, selenocysteine, into proteins is specified in all three domains of life by dynamic translational redefinition of UGA codons. In eukarya and archaea, selenocysteine insertion requires a cis-acting selenocysteine insertion sequence (SECIS) usually located in the 3'UTR of selenoprotein mRNAs. Here we present comparative sequence analysis and experimental data supporting the presence of a second stop codon redefinition element located adjacent to a selenocysteine-encoding UGA codon in the eukaryal gene, SEPN1. This element is sufficient to stimulate high-level (6%) translational redefinition of the SEPN1 UGA codon in human cells. Readthrough levels further increased to 12% when tested in the presence of the SEPN1 3'UTR SECIS. Directed mutagenesis and phylogeny of the sequence context strongly supports the importance of a stem loop starting six nucleotides 3' of the UGA codon. Sequences capable of forming strong RNA structures were also identified 3' adjacent to, or near, selenocysteine-encoding UGA codons in the Sps2, SelH, SelO, and SelT selenoprotein genes.  相似文献   

17.

Background  

The co-translational incorporation of selenocysteine into nascent polypeptides by recoding the UGA stop codon occurs in all domains of life. In eukaryotes, this event requires at least three specific factors: SECIS binding protein 2 (SBP2), a specific translation elongation factor (eEFSec), selenocysteinyl tRNA, and a cis -acting selenocysteine insertion sequence (SECIS) element in selenoprotein mRNAs. While the phylogenetic relationships of selenoprotein families and the evolution of selenocysteine usage are well documented, the evolutionary history of SECIS binding proteins has not been explored.  相似文献   

18.
In mammals, most of the selenium contained in the body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is typically recognized as a translation stop signal, it is intriguing how a cell recognizes and distinguishes a UGA Sec codon from a UGA stop codon. For eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated the Sec insertion sequence (SECIS) in the 3'-untranslated (3'-UTR) region is required for recognition of UGA as a Sec codon. Some proteins which bind to SECIS (SBP) have been reported. However, it is not clear how the SECIS element in the 3'-UTR can mediate Sec insertion far at the in-frame UGA Sec codons. The idea that there must be a signal near the UGA Sec codon is still considered. Therefore, we searched for a protein which binds to an RNA sequence surrounding the UGA Sec codon on human glutathione peroxidase (GPx) mRNA. We found a protein which strongly bound to the RNA fragment upstream of the UGA Sec codon. However, this protein did not bind to the RNA sequence downstream of the UGA codon. This protein also bound to the SECIS sequence in the 3'-UTR of human GPx, and this binding to SECIS was competed with the RNA fragment upstream of the UGA Sec codon. Comparison of the RNA fragment with the SECIS fragment identified the conserved regions, which appeared in the region upstream of the in-frame UGA Sec codon of Se-protein mRNAs. Thus, this study proposes a novel model to understand the mechanisms of Sec incorporation at the UGA Sec codon, especially the regions upstream of the UGA codon of mRNAs of mammalian selenoproteins. This model explains that the stem-loop structure covering the UGA codon is recognized by SBP and how the UGA Sec codon escapes from attack by eRF of the peptide releasing factor.  相似文献   

19.
A selenocysteine insertion sequence (SECIS) element in the 3'-untranslated region and an in-frame UGA codon are the requisite cis-acting elements for the incorporation of selenocysteine into selenoproteins. Equally important are the trans-acting factors SBP2, Sec-tRNA[Ser]Sec, and eEFSec. Multiple in-frame UGAs and two SECIS elements make the mRNA encoding selenoprotein P (Sel P) unique. To study the role of codon context in determining the efficiency of UGA readthrough at each of the 10 rat Sel P Sec codons, we individually cloned 27-nucleotide-long fragments representing each UGA codon context into a luciferase reporter construct harboring both Sel P SECIS elements. Significant differences, spanning an 8-fold range of UGA readthrough efficiency, were observed, but these differences were dramatically reduced in the presence of excess SBP2. Mutational analysis of the "fourth base" of contexts 1 and 5 revealed that only the latter followed the established rules for hierarchy of translation termination. In addition, mutations in either or both of the Sel P SECIS elements resulted in differential effects on UGA readthrough. Interestingly, even when both SECIS elements harbored a mutation of the core region required for Sec incorporation, context 5 retained a significantly higher level of readthrough than context 1. We also show that SBP2-dependent Sec incorporation is able to repress G418-induced UGA readthrough as well as eRF1-induced stimulation of termination. We conclude that a large codon context forms a cis-element that works together with Sec incorporation factors to determine readthrough efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号