首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood-group-specific glycoproteins obtained from ovarian cyst fluids of A1 and A2 persons were degraded with NaOH/NaBH4. The oligosaccharides released were de-N-acetylated with Ba(OH)2 and then hydrolysed with dilute H2SO4. The products were fractionated on columns of ion-exchange resin and the components isolated were re-N-acetylated with 14C-labelled acetic anhydride; further purification was effected by paper chromatography. The following trisaccharides: type 1, GalNAc(alpha 1-3)Gal(beta 1-3)GlcNAc; type 2, GalNAc(alpha 1-3)-Gal(beta 1-4)GlcNAc; type 3 (reduced), GalNAc(alpha 1-3)Gal (beta 1-3)GalNAcOH (where Gal is galactose; GalNAc is N-acetylgalactosamine, GlcNAc is N-acetylglucosamine and GalNAcOH is N-acetylgalactosaminitol) were isolated and characterised from both the A1 and A2 materials. The type 3 (reduced) trisaccharide has not previously been obtained from human glycoproteins. Chromatographic evidence indicated that the three trisaccharide structures were also present in other A1, A2, A1B and A2B ovarian cyst glycoproteins and in A1 and A2 salivary glycoproteins. These findings are not indicative of structural differences between the A determinants of A1 and A2 glycoproteins.  相似文献   

2.
Novel, flexible arylpiperazine gepirone analogs (1a-3a) with a mixed 5-HT1A/5-HT2A receptor profile, low D2 receptor affinity, and agonistic (2a) or partial agonistic (1a, 3a) activity toward 5-HT1A receptor sites were synthesized. Their conformationally restricted counterparts (1b-3b) were selective 5-HT1A ligands (over 5-HT2A and D2 receptors), which turned out to be agonists (2b, 3b), or partial agonist (1b) of 5-HT1A receptors.  相似文献   

3.
In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N(1)-alkyl, an N(1)-methoxy, and several N(1)-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N(1)-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37 degrees C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (microMxmin) required to effect 50% inhibition (IC(50)): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.  相似文献   

4.
In our efforts to identify agents that would specifically inhibit ALDH3A1, we had previously studied extensively the effect of an N(1)-alkyl, an N(1)-methoxy, and several N(1)-hydroxy-substituted ester derivatives of chlorpropamide on the catalytic activities of ALDH3A1s derived from human normal stomach mucosa (nALDH3A1) and human tumor cells (tALDH3A1), and of two recombinant aldehyde dehydrogenases, viz. human rALDH1A1 and rALDH2. The N(1)-methoxy analogue of chlorpropamide, viz. 4-chloro-N-methoxy-N-[(propylamino)carbonyl]benzenesulfonamide (API-2), was found to be a relatively selective and potent inhibitor of tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A-catalyzed oxidation, but even more potently inhibited ALDH2-catalyzed oxidation, whereas an ester analogue, viz. (acetyloxy)[(4-chlorophenyl)sulfonyl]carbamic acid 1,1-dimethylethyl ester (NPI-2), selectively inhibited tALDH3A1-catalyzed oxidation as compared to its ability to inhibit nALDH3A1-, ALDH1A1- and ALDH2-catalyzed oxidations, and this inhibition was apparently irreversible. Three additional chlorpropamide analogues, viz. 4-chloro-N,O-bis(ethoxycarbonyl)-N-hydroxybenzenesulfonamide (NPI-4), N,O-bis(carbomethoxy)methanesulfohydroxamic acid (NPI-5), and 2-[(ethoxycarbonyl)oxy]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (NPI-6), were evaluated in the present investigation. Quantified were NAD-linked oxidation of benzaldehyde catalyzed by nALDH3A1 and tALDH3A1, and NAD-linked oxidation of acetaldehyde catalyzed by rALDH1A1 and rALDH2, all at 37 degrees C and pH 8.1, and in the presence and absence of inhibitor. NPI-4, NPI-5 and NPI-6 were not substrates for the oxidative reactions catalyzed by any of the ALDHs studied. Oxidative reactions catalyzed by the ALDH3A1s, rALDH1A1 and rALDH2 were each inhibited by NPI-4 and NPI-5. NPI-6 was a poor inhibitor of nALDH3A1- and tALDH3A1-catalyzed oxidations, but was a relatively potent inhibitor of rALDH1A1- and rALDH2-catalyzed oxidations. In all cases, inhibition of ALDH-catalyzed oxidation was directly related to the product of inhibitor concentration and preincubation (enzyme+inhibitor) time. As judged by the product values (microM x min) required to effect 50% inhibition (IC(50)): (1) nALDH3A1 and tALDH3A1 were essentially equisensitive to inhibition by NPI-4 and NPI-5, and both enzymes were poorly inhibited by NPI-6; (2) rALDH1A1 was, relative to the ALDH3A1s, slightly more sensitive to inhibition by NPI-4 and NPI-5, and far more sensitive to inhibition by NPI-6; and (3) rALDH1A1 was, relative to rALDH2, essentially equisensitive to inhibition by NPI-5, whereas, it was slightly more sensitive to inhibition by NPI-4 and NPI-6.  相似文献   

5.
Two new alleles (A1 B*3 and A1 B*4) of human plasma alpha 1 B-glycoprotein (alpha 1 B) were reported. alpha 1 B phenotyping was done by using either a simple method of two-dimensional (2-D) agarose gel-horizontal polyacrylamide gel electrophoresis (PAGE) followed by protein staining or by one-dimensional horizontal PAGE and immunoblotting. Seven different alpha 1 B phenotypes (1-1, 1-2, 1-3, 1-4, 2-2, 2-3 and 3-3) were observed; phenotypes 1-3 and 1-4 were differentiated from each other only by the 2-D method. The respective frequencies Af A1 B*1, A1 B*2, A1 B*3 and A1 B*4 alleles in the studied populations were estimated as follows: American Blacks (New York) 0.732, 0.204, 0.064, 0; American Whites (New York) 0.947, 0.053; Czechs (M?lník) 0.964, 0.034, 0, 0.002; Slovaks (Bratislava and Trencin) 0.977, 0.023, 0, 0. The population of American Blacks showed a much higher degree of alpha 1 B polymorphism (polymorphism information content = 0.37) than the Caucasian populations that have been studied.  相似文献   

6.
Seven glutathione-S-transferase (GST) isozymes were purified from liver cytosol of intact male Wistar rats: 1-1(A), 1-1(B), 1-2, 2-2, 3-3, 3-4, 4-4. Treatment of rats with butylated hydroxytoluene (BHT) led to the induction of isozymes GST 1-1(A), 1-1(B) (2-fold), 3-3 (3.5-fold) as well as to the appearance of two new isozymes--1-3 and 4-4(A). Phenobarbital (PB) induced isozymes GST 1-1(A), 1-1(B) (2-fold) and 3-3 (1.5-fold). BHT and PB caused an increase in the specific activity of isozymes 1-1(A), 1-1(B), 3-3, 3-4 towards 1-chloro-2.4-dinitrobenzene and 1.2-dichloro-4-nitrobenzene. 3-Methylcholanthrene (MC) induced isozymes 1-2 (1.5-fold), 2-2 (2-fold) and 4-4 (3-fold). A conclusion was drawn that BHT and PB induced the GST subunits 1 and 3, whereas MC--subunits 2 and 4.  相似文献   

7.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

8.
Six analogues (1-6) of eudistomin D, a beta-carboline alkaloid from a marine tunicate Eudistoma olivaceum, were synthesized, and their affinity and selectivity for adenosine receptors A(1), A(2A), and A(3) were examined. All the synthetic compounds 1-6 did not show affinity to the adenosine A(1) receptor. Delta-carboline 3 exhibited the most potent affinity to the adenosine receptor A(3) among compounds 1-6. Delta-carbolines 3 and 4 showed better affinity than the corresponding beta-carbolines 1 and 2, respectively, while N-methylation (2, 4, and 6, respectively) of the pyrrole ring in 1, 3, and 5 resulted in the reduced affinity to the adenosine A(3) receptor. On the other hand, an eudistomin D derivative, BED, exhibited modest affinity to all the receptors A(1), A(2A), and A(3) but no selectivity.  相似文献   

9.
Novel 2,8-disubstituted adenosine derivatives were synthesized in good overall yields starting from 2-iodoadenosine. Binding affinities were determined for rat adenosine A(1) and A(2A) receptors and human A(3) receptors. Some compounds displayed good adenosine A(2A) receptor affinities, with most of the 2-(1-hexynyl)- and 2-[(E)-1-hexenyl]-substituted derivatives having K(i) values in the nanomolar range. Although the introduction of an 8-alkylamino substituents decreased the affinity for the adenosine A(2A) receptor somewhat, the selectivity for this receptor compared to A(3) was improved significantly. The 8-methylamino (12) and 8-propylamino (14) derivatives of 2-(1-hexynyl)adenosine (3), showed reasonable A(2A) receptor affinities with K(i) values of 115 and 82nM, respectively, and were 49- and 26-fold selective for the adenosine A(2A) receptor compared to the A(3) receptor. The compounds were also evaluated for their ability to stimulate the cAMP production in CHO cells expressing the human adenosine A(2A) receptor. 2-(1-Hexynyl)adenosine (3) and 2-[(E)-1-hexenyl]adenosine (4) both showed submaximal levels of produced cAMP, compared to the reference full agonist CGS 21680, and thus behaved as partial agonists. Most 8-alkylamino-substituted derivatives of 3, displayed similar cAMP production as 3, and behaved as partial agonists as well. Introduction of alkylamino groups at the 8-position of 4, showed a slight reduction of the efficacy compared to 4, and these compounds were partial agonists also.  相似文献   

10.
A pair of enantiomerically pure quaternary ammonium salts with a chiral side chain, methyl-(R)-(1-methylpropyl)di(n-propyl)ammonium iodide 1 and methyl-(S)-(1-methylpropyl)di(n-propyl)ammonium iodide 2, and the related racemate, methyl-(rac)-(1-methylpropyl)di(n-propyl)ammonium iodide 3, were synthesized through a reductive alkylation procedure, starting from enantiomerically pure and, also, racemic forms of (rac)-(1-methylpropyl)amine. A spectroscopic chiroptical signature in solution was provided by the Raman optical activity spectra of compounds 1 and 2. The crystallographic structures of 1, 2, and 3 were examined by single crystal X-ray diffraction. 1 crystallizes in the tetragonal space group P4(3)2(1)2 (no. 96), a = b = 12.826 (2) A, c = 17.730 (2) A, V = 2916.9 (5) A(3), Z = 8, Flack coefficient 0.04 (2). 2 crystallizes in the tetragonal space group P4(1)2(1)2 (no. 92), a = b = 12.842 (1) A, c = 17.749 (2) A, V = 2927.0 (5) A(3), Z = 8, Flack coefficient 0.05 (2). The crystal structures and space groups for 1 and 2 are enantiomorphs and the crystallographic investigation confirmed the absolute configuration of the stereocenter in both compounds. 3 crystallizes in the monoclinic space group P2(1)/n(no. 14), a = 8.178 (1) A, b = 14.309 (2) A, c = 12.328 (2) A, beta = 96.811 (6) degrees, V = 1432.4 (2) A(3), Z = 4.  相似文献   

11.
The effects of adenosine and subtype-specific activators of adenosine receptors (A1, A2A, A2B and A3) were studied on the release of interleukin-1beta (IL-1beta) from peripheral mononuclear cells, monocytes and lymphocytes. In the cells activated by the protein kinase C specific phorbol ester (phorbol 12-myristate 13-acetate) and Ca(2+) ionophore (A23187) both adenosine and the subtype-specific receptor agonists, CPA (A1), CGS 21680 (A2A) and IB-MECA (A3) induced a concentration-dependent inhibition of IL-1beta release. The rank order of potency in the inhibition of IL-1beta release was CPA=CGS 21680>IB-MECA>adenosine>NECA (in the presence of A1, A2A and A3 receptor inhibitors). The inhibitory actions of CPA, CGS 21680 or IB-MECA were significantly reduced in the presence of DPCPX, ZM 243185 or MRS 1191 as subtype-specific antagonists on A1, A2A and A3 adenosine receptors, respectively. It can be concluded that adenosine inhibits the release of IL-1beta from the activated human peripheral mononuclear cells. In this process A1, A2A and A3 receptors are involved.  相似文献   

12.
Structure-activity relationships of 2-phenyl-imidazo[2,1-i]purin-5-ones as ligands for human A(3) adenosine receptors (ARs) were investigated. An ethyl group in the 8-position of the imidazoline ring of 4-methyl-2-phenyl-imidazopurinone leading to chiral compounds was found to increase affinity for human A(3) ARs by several thousand-fold. Propyl substitution instead of methyl at N4 decreased A(3) affinity but increased A(1) affinity leading to potent A(1)-selective AR antagonists. The most potent A(1) antagonist of the present series was (S)-8-ethyl-2-phenyl-4-propyl-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (S-3) exhibiting a K(i) value of 7.4 nM at rat A(1) ARs and greater than 100-fold selectivity versus rat A(2A) and human A(3) ARs. At human A(1) ARs 2-phenylimidazo[2,1-i]purin-5-ones were generally less potent and therefore less A(1)-selective (S-3: K(i)=98 nM). 2-, 3-, or 4-Mono-chlorination of the 2-phenyl ring reduced A(3) affinity but led to an increase in affinity for A(1) ARs, whereas di- (3,4-dichloro) or polychlorination (2,3,5-trichloro) increased A(3) affinity. The most potent and selective A(3) antagonist of the present series was the trichlorophenyl derivative (R)-8-ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (R-8) exhibiting a subnanomolar K(i) value at human A(3) ARs and greater than 800-fold selectivity versus the other AR subtypes. Methylation of 4-alkyl-2-phenyl-substituted imidazo[2,1-i]purin-5-ones led exclusively to the N9-methyl derivatives, which exhibited largely reduced AR affinities as compared to the unmethylated compounds. [35S]GTP gamma S binding studies of the most potent 2-phenyl-imidazo[2,1-i]purin-5-ones at membranes of Chinese hamster ovary cells expressing the human A(3) AR revealed that the compounds were inverse agonists at A(3) receptors under standard test conditions. Due to their high A(3) affinity, selectivity, and relatively high water-solubility, 2-phenyl-imidazo[2,1-i]purin-5-ones may become useful research tools.  相似文献   

13.
In rat hepatocytes, the role of cAMP and Ca(2+) as secondary messengers in the ureagenic response to stimulation of specific adenosine receptor subtypes was explored. Analyzed receptor subtypes were: A(1), A(2A), A(2B) and A(3). Each receptor subtype was stimulated with a specific agonist while blocking all other receptor subtypes with a battery of specific antagonists. For the A(1) and A(3) adenosine receptor subtypes, the secondary messenger was the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)). Accordingly, the A(1) or A(3)-mediated increase in [Ca(2+)](cyt) and in ureagenic activity were both inhibited by chelating Ca(2+) with either EGTA or BAPTA-AM. Also, Gd(3+) blocked both the increase in [Ca(2+)](cyt) and ureagenesis, suggesting that a Ca(2+) channel may be involved in the response to both A(1) and A(3). A partial effect was observed with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin. The concentration of cyclic AMP ([cAMP]) increased in response to stimulation of either the A(2A) or the A(2B) adenosine receptor subtypes, while it decreased slightly in response to stimulation of either A(1) or A(3). The stimulation of either the A(2A) or A(2B) adenosine receptor subtypes resulted in an increase in [cAMP] and an ureagenic response which were not sensitive to EGTA, BAPTA-AM, Gd(3+) or to thapsigargin. In addition, the adenylyl cyclase inhibitor MDL12,330A blocked the ureagenic response to A(2A) and A(2B), but not the response to either A(1) or A(3). Our results indicate that in the ureagenic liver response to adenosine, the secondary messenger for both, the A(1) and A(3) adenosine receptor subtypes is [Ca(2+)](cyt), while the message from the A(2A) and A(2B) adenosine receptor subtypes is relayed by [cAMP].  相似文献   

14.
The purification and characterization of kallikrein-like proteases from rat submandibular glands is described. The proteolytic activity of each fraction during purification was monitored on the synthetic substrate N-alpha-tosyl-L-arginine methyl ester (TAME). The purification scheme involved ammonium sulfate precipitation, chromatography on columns of DEAE-Sepharose and Sephadex G-100 and chromatofocusing. Three TAME-hydrolytic activity peaks were eluted from DEAE-Sepharose as unbound fraction (Pool 1), at 125 mM NaCl (Pool 2) and at 250 mM NaCl concentration (Pool 4). Pool 1 further resolved into two protease fractions (1A1 and 1A2), pool 2 into three protease fractions (2A1, 2A2 and 2A3) and pool 4 gave a single major protease peak (4A1) by chromatofocusing on PBE-94. Protease pools 2A2, 2A3, and 4A1 each gave a single band on SDS-polyacrylamide gel electrophoresis with an estimated molecular weight of 34 kDa, 46 kDa and 46 kDa respectively. Pools 1A1, 1A2, 2A1 and 2a2 gave a single precipitin line with anti-rat glandular kallikrein antibodies. 2A3 and 4A1 did not react with these antibodies. Synthetic substrates DL-val-leu-arg-pNA and Bz-pro-phe-arg-pNA, specific for kallikrein-like proteases, were hydrolyzed preferentially by 2A3 and 4A1 but were poor substrates for 1A1, 1A2, 2A1 and 2A2.  相似文献   

15.
16.
Mammalian ALDH3 genes (ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2) encode enzymes of peroxidic and fatty aldehyde metabolism. ALDH3A1 also plays a major role in anterior eye tissue UV-filtration. BLAT and BLAST analyses were undertaken of several vertebrate genomes using rat, chicken and zebrafish ALDH3-like amino acid sequences. Predicted vertebrate ALDH3 sequences and structures were highly conserved, including residues involved in catalysis, coenzyme binding and enzyme structure as reported by Liu et al. [27] for rat ALDH3A1. Phylogeny studies of human, rat, opossum, platypus, chicken, xenopus and zebrafish ALDH3-like sequences supported three hypotheses: (1) the mammalian ALDH3A1 gene was generated by a tandem duplication event of an ancestral vertebrate ALDH3A2 gene; (2) multiple mammalian and chicken ALDH3B-like genes were generated by tandem duplication events within genomes of related species; and (3) vertebrate ALDH3A and ALDH3B genes were generated prior to the appearance of bony fish more than 500 million years ago.  相似文献   

17.
18.
Factor VIIIa is a trimer of the A1, A2, and A3-C1-C2 subunits. Regions in the A2 subunit that interact with the A1/A3-C1-C2 dimer were localized using synthetic peptides derived from A2 sequences showing high probability of being surface exposed. Peptides were restricted to residues 373-562 of A2 based on the earlier observation that this region of A2 reacts with A1 using a zero length cross-linker. Peptides were assessed for their capacity to inhibit the reconstitution of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. Reconstitution was monitored using both regeneration of factor VIIIa activity and fluorescence quenching of an acrylodan-labeled A2 (Ac-A2) by fluorescein-labeled A1/A3-C1-C2. The activity assay identified four peptides as inhibitors, residues 373-395 (IC(50) = 65 micrometer), 418-428 (IC(50) = 25 micrometer), 482-493 (IC(50) = 325 micrometer), and 518-533 (IC(50) = 585 micrometer). The 373-395 and 518-533 peptides eliminated the fluorescence quenching of Ac-A2, whereas the 418-428 peptide reduced but did not eliminate Ac-A2 quenching. Peptide 482-493 had no effect on the fluorescence quenching of Ac-A2 suggesting that the peptide did not directly affect reassociation of the factor VIIIa subunits. These results identify three regions in the A2 subunit (373-395, 418-428, and 518-533) that interact with the A1/A3-C1-C2 dimer. Furthermore, comparison of results obtained using the two assays distinguish inhibition of the intersubunit interactions from intermolecular interactions.  相似文献   

19.
20.
Analogues of the 2',5'-linked adenylate trimers monophosphate (p5'A2'p5'A2'p5'A) containing 8-hydroxypropyladenosine, 8-bromoadenosine, and 8-hydroxyadenosine in the first, second, and third nucleotide positions were tested for their ability to bind to and activate RNase L of mouse L cells. p5'AHPr2'p5'AHPr2'p5'AHPr (pAHPr3) (1b) and p5'ABr2'p5'ABr2'p5'ABr (pABr3) (1d) were markedly decreased in ability to bind to the 2-5A dependent endonuclease. On the other hand, analogue of the 2',5'-linked adenylate trimer monophosphate substituted by 8-hydroxyadenosine in the first, second, and third nucleotide position was bound about as well as parent 2-5A [pppA(2'p5'A)2] (p3A3) (1e) to RNase L. Additionally, p5'AOH2'p5'AOH2'p5'AOH (pAOH3) (1c) was as active as parent 2-5A in the rRNA cleavage assay, while pAHPr3 (1b) and pABr3 (1d) were devoid of activity. The 8-substituted analogues of 2-5A were more resistant to the degradation by the (2',5') phosphodiesterase. Finally of particular interest was monophosphate, pAOH3 (1c) which possessed nearly 100% of the translation inhibitory activity of 2-5A triphosphate itself. These results suggest that changes in the base-sugar torsion angles of 2-5A may modulate both binding to and activation of mouse L cell RNase L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号