首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

2.
The inactivation of alkaline phosphatase from green crab (Scylla serrata) by N-bromosuccinimide has been studied using the kinetic method of the substrate reaction during modification of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. The results show that inactivation of the enzyme is a slow, reversible reaction. The microscopic rate constants for the reaction of the inactivator with free enzyme and the enzyme-substrate complex were determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by N-bromosuccinimide. The above results suggest that the tryptophan residue is essential for activity and is situated at the active site of the enzyme.Abbreviations ALP alkaline phosphatase - PNPP p-nitrophenyl phosphate - NBS N-bromosuccinimide  相似文献   

3.
Xie XL  Chen QX  Gong M  Wang Q  Shi Y 《The protein journal》2005,24(5):267-273
The effects of guanidinium chloride (GuHCl) on the activity of Penaeus vannamei β-N-acetyl-d-glucosaminidase (NAGase) have been studied. The results show that GuHCl, at appropriate concentrations, can lead to reversible inactivation of the enzyme, and the IC50 is estimated to be 0.6 M. Changes of activity and conformation of the enzyme in different concentrations of GuHCl have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreases distinctly with increasing GuHCl concentrations, and the emission peaks appear red-shifted (from 339.4 to 360 nm). Changes in the conformation and catalytic activity of the enzyme are compared. The extent of inactivation is greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. The kinetics of inactivation has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The value of k+0 is larger than that of k+0 which suggests that the enzyme is protected by substrate to a certain extent during guanidine denaturation.  相似文献   

4.
Green crab (Scylla Serrata) alkaline phosphatase (EC 3.1.3.1.) is a metalloenzyme, the each active site in which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou has been applied to a study on the kinetics of the course of inactivation of the enzyme by ethylenediaminetetraacetic acid disodium (EDTA). The kinetics of the substrate reaction with different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA suggested a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing the initial formation of an enzyme-EDTA complex is a relatively rapid reaction, followed a slow inactivation step that probably involves a conformational change of the enzyme. Zinc ions are finally removed from the enzyme. The presence of metal ions apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

5.
The inactivation and unfolding of aminoacyclase (EC 3.5.1.14) during denaturation by different concentrations of trifluoroethanol (TFE) have been studied. A marked decrease in enzyme activity was observed at low TFE concentrations. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] was applied to study the kinetics of the inactivation course of aminoacyclase during denaturation by TFE. The inactivation rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method. The inactivation reaction was a monophasic first-order reaction. The kinetics of the unfolding course were a biphasic process consisting of two first-order reactions. At 2% TFE concentration, the inactivation rate of the enzyme was much faster than the unfolding rate. At a higher concentration of TFE (10%), the inactivation rate was too fast to be determined by conventional methods, whereas the unfolding course remained as a biphasic process with fast and slow reactions occurring at measurable rates. The results suggest that the aminoacyclase active site containing Zn2+ ions is situated in a limited and flexible region of the enzyme molecule that is more fragile to the denaturant than the protein as a whole.  相似文献   

6.
The inhibition of alkaline phosphatase from green crab (Scylla serrata) by L-cysteine has been studied. The results show that L-cysteine gives a mixed-type inhibition. The progress-of-substrate-reaction method previously described by Tsou [(1988), Adv. Enzymol. Related Areas Mol. Biol. 61, 391–436] was used to study the inactivation kinetics of the enzyme by L-cysteine. The microscopic rate constants were determined for reaction of the inhibitor with the free enzyme and the enzyme–substrate complex (ES) The results show that inactivation of the enzyme by L-cysteine is a slow, reversible reaction. Comparison of the inactivation rate constants of free enzyme and ES suggests that the presence of the substrate offers marked protection of this enzyme against inactivation by L-cysteine.  相似文献   

7.
The inactivation of alkaline phosphatase from green crab (Scylla serrata) by N-bromosuccinimide has been studied using the kinetic method of the substrate reaction during modification of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. The results show that inactivation of the enzyme is a slow, reversible reaction. The microscopic rate constants for the reaction of the inactivator with free enzyme and the enzyme-substrate complex were determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by N-bromosuccinimide. The above results suggest that the tryptophan residue is essential for activity and is situated at the active site of the enzyme.  相似文献   

8.
活性部位的柔性   总被引:8,自引:0,他引:8  
比较酶在变性过程中构象和活力变化,发现在活性完全丧失时尚无可察 觉的整体构象变化。排除变性剂抑制和寡聚酶解聚等可能性之后,提出了酶活性部位柔性假说。随后用多种实验方法直接证实了活性部位的构象变化先于分子整体构象变化,并与活性丧失同步,根据催化过程中活性部位构旬变化,以及限制活性部位构象变化对酶活性的影响,提出了酶活性部位柔性为酶充分表现其催化活性所必需的设想。  相似文献   

9.
The changes in activity and unfolding of calf intestinal alkaline phosphatase (CIP) during denaturation in different concentrations of trifluoroethanol (TFE) have been investigated by far-ultraviolet circular dichroism and fluorescence emission spectra. Unfolding and activation rate constants were measured and compared, the activation and inactivation courses were much faster than that of unfolding, which suggests that the active site of CIP containing two zinc ions and one magnesium ion is situated in a limited and flexible region of the enzyme molecule that is more fragile to the denaturant than the protein as a whole. However, compared to other metalloenzymes, CIP is inactivated at higher concentrations of TFE as denaturant.  相似文献   

10.
The kinetics of denaturation and aggregation of rabbit muscle glycogen phosphorylase b in the presence of guanidine hydrochloride (GuHCl) have been studied. The curve of inactivation of phosphorylase b in time includes a region of the fast decline in the enzymatic activity,an intermediate plateau,and a part with subsequent decrease in the enzymatic activity. The fact that the shape of the inactivation curves is dependent on the enzyme concentration testifies to the dissociative mechanism of inactivation. The dissociation of phosphorylase b dimers into monomers in the presence of GuHCl is supported by sedimentation data. The rate of phosphorylase b aggregation in the presence of GuHCl rises as the denaturant concentration increases to 1.12 M; at higher concentration of GuHCl, suppression of aggregation occurs. At rather low concentration of the protein (0.25 mg/ml), the terminal phase of aggregation follows the kinetics of a monomolecular reaction (the reaction rate constant is equal to 0.082 min–1;1 M GuHCl, 25°C). At higher concentration of phosphorylase b (0.75 mg/ml), aggregation proceeds as a trimolecular reaction.  相似文献   

11.
Purified chicken intestinal alkaline phosphatase is active at pH 8 to 9, but becomes rapidly inactivated with change of pH to 6 or less. Also, a solution of the inactivated enzyme at pH 4.5 rapidly regains its activity at pH 8. In the range of pH 6 to 8 a solution of purified alkaline phosphatase consists of a mixture of active and inactive enzyme in equilibrium with each other. The rate of inactivation at lower pH and of reactivation at higher pH increases with increase in temperature. Also, the activity at equilibrium in the range of pH 6 to 8 increases with temperature so that a solution equilibrated at higher temperature loses part of its activity on cooling, and vice versa, a rise in temperature shifts the equilibrium toward higher activity. The kinetics of inactivation of the enzyme at lower pH and the reactivation at higher pH is that of a unimolecular reaction. The thermodynamic values for the heat and entropy of the reversible inactivation and reactivation of the enzyme are considerably lower than those observed for the reversible denaturation of proteins. The inactivated enzyme at pH 4 to 6 is rapidly reactivated on addition of Zn ions even at pH 4 to 6. However, zinc ions are unable to replace magnesium ions as cocatalysts for the enzymatic hydrolysis of organic phosphates by alkaline phosphatase.  相似文献   

12.
Changes of activity and conformation of Ampullarium crossean beta-glucosidase in different concentrations of guanidine hydrochloride (GuHCl) have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreased distinctly with increasing guanidine concentrations, the emission peaks appeared red shifted (from 338.4 to 350.8 nm), whereas a new fluorescence emission peak appeared near 310 nm. Changes in the conformation and catalytic activity of the enzyme were compared. A corresponding rapid decrease in catalytic activity of the enzyme was also observed. The extent of inactivation was greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. k(+0)>k(+0)' also showed that the enzyme was protected by substrate to a certain extent during guanidine denaturation.  相似文献   

13.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme that catalyzes the nonspecific hydrolysis of phosphate monoesters. The effects of some pollutants in seawater on the activity of the enzyme will result in the loss of the biological function of the enzyme, which will affect the exuviating crab shell and threaten the survival of the animal. In the present paper, the effects of four oxodiperoxovanadate (V) complexes on the activity of green crab alkaline phosphatase have been studied. The results show that these vanadate derivatives can lead to reversible inactivation. The equilibrium constants for binding of inhibitors with the enzyme and/or the enzyme–substrate complexes have been determined. The results show that sodium (2,2'-bipyridine)oxodiperoxovanadate, pV(bipy), and potassium oxodiperoxo-(1,10-phenanthroline)vanadate, pV(phen), are competitive inhibitors, while potassium picolinato-oxodiperoxo-vanadate, pV(pic), and oxalato-oxodiperoxovanadate, pV(ox), are mixed-type inhibitors. These results suggest that pV(bipy) is a considerably more potent competitive inhibitor than pV(phen) and that the competitive inhibition effect of pV(pic) is stronger than that of pV(ox), but the non-competitive inhibition effect of pV(ox) is stronger than that of pV(pic).  相似文献   

14.
Yeast alcohol dehydrogenase preparations were prepared with the conformational zinc ion removed (Apo-I YADH) and with both the conformational and catalytic zinc ions removed (Apo-II YADH). The unfolding of Apo-I YADH and Apo-II YADH during denaturation in urea solutions was then followed by fluorescence emission, circular dichroism, and second-derivative optical spectroscopies. Compared with the native enzyme, Apo-I YADH incurred some slight unfolding, and its stability against urea was markedly decreased, while Apo-II YADH incurred marked unfolding but contained residual ordered structure even at high urea concentrations. The results show that native YADH is more conformationally stable against urea denaturation than Apo-I YADH, indicating that the conformational Zn2+ plays an important role in stabilizing the conformation of the YADH molecule. However, unfolding of the region around the conformational zinc ion is shown not to be the rate limited step in the unfolding of the molecule by the fact that the unfolding and inactivation rate constants of native and Apo-I YADH are the same. It is suggested that the catalytic zinc ion is more important in maintaining the structure of YADH. YADH lost its cooperative unfolding ability after the zinc ions were removed. The shape of the transition curves of Apo-I YADH suggests the existence of an unfolding intermediate. For both native and Apo-I YADH, inactivation occurs at much lower urea concentrations than that needed to produce significant conformational changes of the enzyme molecule. At urea concentration above 4 M, the inactivation rate constants are much higher than those of the fast phase of the reaction of unfolding. These results support the suggestion of flexibility at the active site of the enzyme (C. L. Tsou (1986) Trends Biochem. Sci., 11, 427-429; (1993) Science, 262, 308-381).  相似文献   

15.
Ulva pertusa Kjellm alkaline phosphatase (EC 3.3.3.1) is a metalloenzyme, the active site of which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory described by Tsou of the substrate reaction during irreversible inhibition of enzyme activity has been employed to study the kinetics of the course of inactivation of the enzyme by EDTA. The kinetics of the substrate reaction at different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA indicated a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing that the initial formation of an enzyme-EDTA complex is a relative rapid reaction, following by a slow inactivation step that probably involves a conformational change of the enzyme. The presence of Zn2+ apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

16.
The thermostability of an enzyme that exhibits phytase and acid phosphatase activities was studied. Kinetics of inactivation and unfolding during thermal denaturation of the enzyme were compared. The loss of phytase activity on thermal denaturation is most suggestive of a reversible process. As for acid phosphatase activities, an interesting phenomenon was observed; there are two phases in thermal inactivation: when the temperature was between 45 and 50 degrees C, the thermal inactivation could be characterized as an irreversible inactivation which had some residual activity and when the temperature was above 55 degrees C, the thermal inactivation could be characterized as an irreversible process which had no residual activity. The microscopic rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method [Adv. Enzymol. Relat. Areas Mol. Biol. 61 (1988) 381]. Fluorescence analyses indicate that when the enzyme was treated at temperatures below 60 degrees C for 60 min, the conformation of the enzyme had no detectable change; when the temperatures were above 60 degrees C, some fluorescence red-shift could be observed with a decrease in emission intensity. The inactivation rates (k(+0)) of free enzymes were faster than those of conformational changes during thermal denaturation at the same temperature. The rapid inactivation and slow conformational changes of phytase during thermal denaturation suggest that inactivation occurs before significant conformational changes of the enzyme, and the active site of this enzyme is situated in a relatively fragile region which makes the active site more flexible than the molecule as a whole.  相似文献   

17.
The inhibition of alkaline phosphatase from green crab (Scylla serrata) by L-cysteine has been studied. The results show that L-cysteine gives a mixed-type inhibition. The progress-of-substrate-reaction method previously described by Tsou [(1988), Adv. Enzymol. Related Areas Mol. Biol. 61, 391–436] was used to study the inactivation kinetics of the enzyme by L-cysteine. The microscopic rate constants were determined for reaction of the inhibitor with the free enzyme and the enzyme–substrate complex (ES) The results show that inactivation of the enzyme by L-cysteine is a slow, reversible reaction. Comparison of the inactivation rate constants of free enzyme and ES suggests that the presence of the substrate offers marked protection of this enzyme against inactivation by L-cysteine.  相似文献   

18.
The Tsou method was used to study the kinetic course of inactivation of green crab alkaline phosphatase by zinc ions. The results show that the enzyme was inactivated by a complexing scheme which has not been previously identified. The enzyme first reversibly and quickly binds Zn(2+) and then undergoes a slow reversible course to inactivation and slow conformational change. The inactivation reaction is a single molecule reaction and the apparent inactivation rate constant is for a saturated reaction being independent of Zn(2+) concentration if the concentration is sufficiently high. The microscopic rate constants of inactivation and the association constant were determined from the measurements.  相似文献   

19.
During denaturation by sodium dodecyl sulfate (SDS), aminoacylase shows a rapid decrease in activity with increasing concentration of the detergent to reach complete inactivation at 1.0 mM SDS. The denatured minus native-enzyme difference spectrum showed two negative peaks at 287 and 295 nm. With the increase of concentration of SDS, both negative peaks increased in magnitude to reach maximal values at 5.0 mM SDS. The fluorescence emission intensity of the enzyme decreased, whereas there was no red shift of emission maximum in SDS solutions of increasing concentration. In the SDS concentration regions employed in the present study, no marked changes of secondary structure of the enzyme have been observed by following the changes in far-ultraviolet CD spectra. The inactivation of this enzyme has been followed and compared with the unfolding observed during denaturation in SDS solutions. A marked inactivation is already evident at low SDS concentration before significant conformational changes can be detected by ultraviolet absorbance and fluorescence changes. The inactivation rate constants of free enzyme and substrate-enzyme complex were determined by the kinetics method of the substrate reaction in the presence of inactivator previously described by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. It was found that substrate protects against inactivation and at the same SDS concentrations, the inactivation rate of the free enzyme is much higher than the unfolding rate. The above results show that the active sites of metal enzyme containing Zn2+ are also situated in a limited and flexible region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

20.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme which catalyzes the nonspecific hydrolysis of phosphate monoesters. Some pollutants in seawater affect the enzyme activity causing loss of the biological function of the enzyme, which affects the exuviating crab-shell and threatens the survival of the animal. The present paper studies the effects of thiohydroxyal compounds on the activity of green crab alkaline phosphatase. The results show that thiohydroxyal compounds can lead to reversible inhibition. The equilibrium constants have been determined for dithiothreitol (DTT) and mercaptoethanol (ME) binding with the enzyme and/or the enzyme-substrate complexes. The results show that both DTT and ME are non-competitive inhibitors. The kinetics of enzyme inactivation by ME at low concentrations has been studied using the kinetic method of the substrate reaction. The results suggest that at pH 10.0, the action of ME on green crab ALP is first quick equilibrium binding and then slow inactivation. The microscopic rate constants were determined for inactivation and reactivation. The rate constant of the forward inactivation (k(+0)) is much larger than that of the reverse reactivation (k(-0)). Therefore, when the ME concentration is sufficiently large, the enzyme is completely inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号