首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Apex predators and plant resources are both critical for maintaining diversity in biotic communities, but the indirect (‘cascading’) effects of top‐down and bottom‐up forces on diversity at different trophic levels are not well resolved in terrestrial systems. Manipulations of predators or resources can cause direct changes of diversity at one trophic level, which in turn can affect diversity at other trophic levels. The indirect diversity effects of resource and consumer variation should be strongest in aquatic systems, moderate in terrestrial systems, and weakest in decomposer food webs. We measured effects of top predators and plant resources on the diversity of endophytic animals in an understorey shrub Piper cenocladum (Piperaceae). Predators and resource availability had significant direct and indirect effects on the diversity of the endophytic animal community, but the effects were not interactive, nor were they consistent between living vs. detrital food webs. The addition of fourth trophic level beetle predators increased diversity of consumers supported by living plant tissue, whereas balanced plant resources (light and nutrients) increased the diversity of primary through tertiary consumers in the detrital resources food web. These results support the hypotheses that top‐down and bottom‐up diversity cascades occur in terrestrial systems, and that diversity is affected by different factors in living vs. detrital food webs.  相似文献   

2.
The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how strongly a three-species assemblage of rodent consumers affected plant productivity. We also examined whether predator exclusion influenced the magnitude of post-dispersal seed predation by mice. Both ungulates and rodents had strong direct effects on graminoid biomass. However, rodent impacts on plant biomass did not differ across plots with or without predators and/or ungulates. Deer mice removed more seeds from seed depots on predator exclusion plots, suggesting trait-mediated indirect effects of predators, but this short-term behavioural response did not translate into longer-term impacts on seed survival. These results suggest that vertebrate predators do not fundamentally influence primary production or seed survival in our system.  相似文献   

3.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

4.
5.
Linearity in the aggregate effects of multiple predators in a food web   总被引:5,自引:0,他引:5  
Theory in community ecology often assumes that predator species have similar indirect effects and thus can be treated mathematically as a single functional unit (e.g. guild or trophic level). This assumption is questionable biologically because predator species typically differ in their effects, creating the potential for nonlinearities when they coexist. We evaluated the nature of indirect effects caused by three species of hunting spider predators, singly and in multiple species combinations, on grass and herb plants in experimental old-field food webs. Despite the potential for nonlinearity, indirect effects in different multiple predator combinations consistently did not differ significantly from the respective means of the single species effects. Thus, for this experimental system, the whole was simply the average of the parts. Consequently, models which abstract predator species as single trophic levels would successfully predict indirect effects in this system regardless of the composition of the predator fauna.  相似文献   

6.
Non-lethal effects of predation in birds   总被引:2,自引:2,他引:0  
WILL CRESSWELL 《Ibis》2008,150(1):3-17
Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or ‘density’ effects), where prey is consumed, or through non‐lethal effects (trait‐mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non‐lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non‐lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti‐predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade‐offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long‐term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging–predation risk trade‐off is probably an effective framework for understanding the importance of non‐lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade‐off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non‐lethal effects decouple the relationship between predator density and direct mortality rate. The trade‐off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate.  相似文献   

7.
Trophic cascades are extensively documented in nature, but they are also known to vary widely in strength and frequency across ecosystems. Therefore, much effort has gone into understanding which ecological factors generate variation in cascade strength. To identify which factors covary with the strength of cascades in streams, we performed a concurrent experiment across 17 streams throughout the Sierra Nevada Mountains. We eliminated top consumers from experimental substrates using electrical exclusions and compared the strength of indirect effects of consumers on the biomass of primary producers relative to control patches. In each stream we 1) classified the dominant invertebrate herbivores according to life‐history traits that influence their susceptibility to predators, 2) determined the abundance and diversity of algae and herbivores, and 3) measured production‐to‐biomass ratios (P:B) of the stream biofilm. This allowed us to assess three common predictions about factors thought to influence the strength of trophic cascades: cascade strength 1) is weaker in systems dominated by herbivores with greater ability to evade or defend against predators, 2) is stronger in systems characterized by low species diversity, and 3) increases with increasing producer P:B. When averaged across all streams, the indirect effect of predators increased the biomass of periphyton by a mean 60%. However, impacts of predators on algae varied widely, ranging from effects that exacerbated algal loss to herbivores, to strong cascades that increased algal biomass by 4.35 times. Cascade strength was not related to herbivore traits or species diversity, but decreased significantly with increasing algal diversity and biofilm P:B in a stream. Partial regression analyses suggested that the relationship between cascade strength and algal diversity was spurious, and that the only significant covariate after statistically controlling for cross‐correlations was algal P:B. Our study contributes to the ongoing debate about why trophic cascade strength varies in nature and is useful because it eliminates factors that have no potential to explain variation in cascades within these stream ecosystems.  相似文献   

8.
Terrestrial trophic cascades: how much do they trickle?   总被引:1,自引:0,他引:1  
Although more consensus is now emerging on the magnitude and frequency of cascading trophic effects in aquatic communities, the debate over their terrestrial counterparts continues. We used meta-analysis to analyze field experiments on trophic cascades in terrestrial arthropod-dominated food webs to evaluate the overall magnitude of trophic cascades and conditions affecting their occurrence and strength. We found extensive support for the presence of trophic cascades in terrestrial communities. In the majority of experiments, predator removal led to increased densities of herbivorous insects and higher levels of plant damage. Cascades in which removing predators led to decreased herbivory also were detected but were less frequent and weaker, suggesting a predominantly three-trophic-level behavior of arthropod-dominated terrestrial food webs. Despite the clear evidence that cascades often decreased plant damage, residual effects of predation produced either no or only minimal changes in overall plant biomass. Agricultural systems and natural communities exhibited similarly strong effects of predation on herbivore abundance. However, resulting effects on plant damage and community-wide effects of trophic cascades on plant biomass usually were highly variable, and only in the managed agricultural systems did predators occasionally have strong indirect effects on plant biomass. Our meta-analysis suggests that the effects of trophic cascades on the biomass of primary producers are weaker in terrestrial than aquatic food webs.  相似文献   

9.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

10.
Local species extinctions may lead to, often unexpected, secondary extinctions. To predict these, we need to understand how indirect effects, within a network of interacting species, affect the ability of species to persist. It has been hypothesized that the persistence of some predators depends on other predator species that suppress competitively dominant prey to low levels, allowing a greater diversity of prey species, and their predators, to coexist. We show that, in experimental insect communities, the absence of one parasitoid wasp species does indeed lead to the extinction of another that is separated by four trophic links. These results highlight the importance of a holistic systems perspective to biodiversity conservation and the necessity to include indirect population dynamic effects in models for predicting cascading extinctions in networks of interacting species.  相似文献   

11.
Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains about the relative strength of density- (consumptive) and trait-mediated (non-consumptive) effects in trophic cascades. This debate may, in part, be resolved by considering prey experience, which shapes prey traits (through genetic and plastic change) and influences prey survival (and therefore density). Here, we investigate the cascading role of prey experience through the addition of mosquitofish (Gambusia affinis) from predator-experienced or predator-naïve sources to mesocosms containing piscivorous largemouth bass (Micropterus salmoides), zooplankton, and phytoplankton. These two sources were positioned along a competition-defense tradeoff. Results show that predator-naïve mosquitofish suffered higher depredation rates, which drove a density-mediated cascade, whereas predator-experienced mosquitofish exhibited higher survival but fed less, which drove a trait-mediated cascade. Both cascades were similar in strength, leading to indistinguishable top-down effects on lower trophic levels. Therefore, the accumulation of prey experience with predators can cryptically shift cascade mechanisms from density- to trait-mediated.  相似文献   

12.
Sit‐and‐wait predators use relatively simple rules for their decisions to choose and leave a patch, such as using the direct presence of prey to select a hunting site. However, the direct presence of prey can only be used when there is a highly visited patch in the proximity of the predator. Therefore, it is plausible that sit‐and‐wait predators also exploit indirect cues of prey presence and, consequently, use associative learning to select a hunting site. The present study tests for the role of associative learning in a sit‐and‐wait predator species for which the ecology is well understood: Misumena vatia Clerck crab spiders. An ecologically relevant scenario is used by selecting flower colour as the conditioned stimulus and prey presence as the unconditioned stimulus. The results provide no evidence that M. vatia crab spiders use the association between flower colour and food presence for selecting a hunting site. After a training phase of being exposed to a colourful artificial flower highly visited by bees, spiders select a hunting site independently of its colour during the testing phase. Investigations of similar scope and ecological relevance are required with other sit‐and‐wait predators to identify the conditions promoting the use of associative learning for foraging site selection when animals face an unpredictable food supply.  相似文献   

13.
Trophic cascades – the indirect effect of predators on non‐adjacent lower trophic levels – are important drivers of the structure and dynamics of ecological communities. However, the influence of intraspecific trait variation on the strength of trophic cascade remains largely unexplored, which limits our understanding of the mechanisms underlying ecological networks. Here we experimentally investigated how intraspecific difference among herbivore lineages specialized on different host plants influences trophic cascade strength in a terrestrial tri‐trophic system. We found that the occurrence and strength of the trophic cascade are strongly influenced by herbivores’ lineage and host‐plant specialization but are not associated with density‐dependent effects mediated by the growth rate of herbivore populations. Our findings stress the importance of intraspecific heterogeneities and evolutionary specialization as drivers of trophic cascade strength and underline that intraspecific variation should not be overlooked to decipher the joint influence of evolutionary and ecological factors on the functioning of multi‐trophic interactions.  相似文献   

14.
Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab ( Carcinus maenas ), an intermediate consumer (the snail, Nucella lapillus ) and a basal resource (the barnacle, Semibalanus balanoides ) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics.  相似文献   

15.
Temporally variable and reciprocal subsidies between ecosystems are ubiquitous. These spatial flows can generate a suite of direct and indirect effects in local and meta-ecosystems. The focus of most subsidy research, however, has been on the response of consumers in recipient ecosystems to constant subsidies over very short or very long time scales. We derive a meta-ecosystem model to explicitly consider the dynamic feedbacks between local ecosystems coupled through reciprocal pulsed subsidies. We predict oscillating reinforcing and dampening effects of reciprocal pulsed herbivore flows. Maximum reinforcing effects between reciprocal pulsed herbivore flows occur when these flows are in phase with the dynamics of neighboring predators. This prediction is robust to a range of pulse quantities and frequencies. Reciprocal pulsed herbivore subsidies lead to spatial and temporal variability in the strength of trophic cascades in local and meta-ecosystems but these cascading effects are the strongest when reciprocal pulsed subsidies are temporally concentrated. When predators demonstrate a behavioral response to prey abundance, reciprocal pulsed subsidies dampen the strength of local trophic cascades but lead to strong trophic cascades across local ecosystems. The timing of reciprocal pulsed subsidies is a critical component that determines the cascading effects of spatial flows. We show that spatial and temporal variabilities in resources and consumers can have a significant influence on the strength of cascading trophic interactions; therefore, our ability to detect and understand trophic cascades may depend on the scale of inquiry of ecological studies.  相似文献   

16.
An important challenge in community ecology is identifying the functional characteristics capable of predicting the nature and strength of predator effects on food webs. We developed an individual‐based model, based on a shallow lake model system, to evaluate the total, consumptive, and non‐consumptive indirect effect that predators have on basal resources when the predators differ in their foraging types (active adaptive foraging or sedentary foraging). Overall, both predator types caused similar total indirect effects on lower trophic levels. However, the nature net effects of predators diverged between predator foraging types. Active predators caused larger non‐consumptive effects, relative to the total indirect effect, irrespective of predation pressure levels. On the other hand, sedentary predators caused larger non‐consumptive effects for lower predation pressure levels, but consumptive effects became more important as predation pressure increased. Our simulations showed that the reliance on a particular mechanism driving consumer–resource interactions is altered by predator foraging behavior and highlight the importance of both prey and predator foraging behaviors to predict the causes and consequences of cascading effects observed in food webs.  相似文献   

17.
1.?Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2.?We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3.?Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4.?Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores.  相似文献   

18.
A cross-ecosystem comparison of the strength of trophic cascades   总被引:11,自引:4,他引:7  
Although trophic cascades (indirect effects of predators on plants via herbivores) occur in a wide variety of food webs, the magnitudes of their effects are often quite variable. We compared the responses of herbivore and plant communities to predator manipulations in 102 field experiments in six different ecosystems: lentic (lake and pond), marine, and stream benthos, lentic and marine plankton, and terrestrial (grasslands and agricultural fields). Predator effects varied considerably among systems and were strongest in lentic and marine benthos and weakest in marine plankton and terrestrial food webs. Predator effects on herbivores were generally larger and more variable than on plants, suggesting that cascades often become attenuated at the plant–herbivore interface. Top‐down control of plant biomass was stronger in water than on land; however, the differences among the five aquatic food webs were as great as those between wet and dry systems.  相似文献   

19.
Griffen BD  Byers JE 《Oecologia》2006,146(4):608-614
Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific. An erratum to this article can be found at  相似文献   

20.
Warfe DM  Barmuta LA 《Oecologia》2006,150(1):141-154
A considerable amount of research has investigated the influence of habitat structure on predator success, yet few studies have explored the implications for community structure and food-web dynamics. The relative importance of macrophyte structure and fish predation on the composition of the macroinvertebrate and periphyton communities in a lowland river was investigated using a multifactorial caging experiment. We hypothesised that: (1) fish predators are less effective in a more structurally complex macrophyte analogue; (2) strong direct and indirect effects of fish predators (e.g. trophic cascades) are less likely to occur in a structurally complex habitat; and (3) the strength of these patterns is influenced by the composition of the prevailing community assemblage. We measured the abundance and composition of the macroinvertebrate and periphyton communities associated with three different-shaped macrophyte analogues, under different fish predator treatments and at different times. Macrophyte analogue architecture had strong, consistent effects on both the macroinvertebrate and periphyton communities; both were most abundant and diverse on the most structurally complex plant analogue. In contrast, the fish predators affected only a subset of the macroinvertebrate community and there was a suggestion of minor indirect effects on periphyton community composition. Contrary to expectations, the fish predators had their strongest effects in the most structurally complex macrophyte analogue. We conclude that in this system, macrophyte shape strongly regulates the associated freshwater assemblage, resulting in a diverse community structure less likely to exhibit strong effects of fish predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号