首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ciprofloxacin (CIP), a fluoroquinolone antibacterial drug, is widely used in the treatment of serious infections in humans. Its degradation by basidiomycetous fungi was studied by monitoring 14CO2 production from [14C]CIP in liquid cultures. Sixteen species inhabiting wood, soil, humus, or animal dung produced up to 35% 14CO2 during 8 weeks of incubation. Despite some low rates of 14CO2 formation, all species tested had reduced the antibacterial activity of CIP in supernatants to between 0 and 33% after 13 weeks. Gloeophyllum striatum was used to identify the metabolites formed from CIP. After 8 weeks, mycelia had produced 17 and 10% 14CO2 from C-4 and the piperazinyl moiety, respectively, although more than half of CIP (applied at 10 ppm) had been transformed into metabolites already after 90 h. The structures of 11 metabolites were elucidated by high-performance liquid chromatography combined with electrospray ionization mass spectrometry and 1H nuclear magnetic resonance spectroscopy. They fell into four categories as follows: (i) monohydroxylated congeners, (ii) dihydroxylated congeners, (iii) an isatin-type compound, proving elimination of C-2, and (iv) metabolites indicating both elimination and degradation of the piperazinyl moiety. A metabolic scheme previously described for enrofloxacin degradation could be confirmed and extended. A new type of metabolite, 6-defluoro-6-hydroxy-deethylene-CIP, provided confirmatory evidence for the proposed network of congeners. This may result from sequential hydroxylation of CIP and its congeners by hydroxyl radicals. Our findings reveal for the first time the widespread potential for CIP degradation among basidiomycetes inhabiting various environments, including agricultural soils and animal dung.  相似文献   

2.
H G Wetzstein  N Schmeer    W Karl 《Applied microbiology》1997,63(11):4272-4281
The degradation of enrofloxacin, a fluoroquinolone antibacterial drug used in veterinary medicine, was investigated with the brown rot fungus Gloeophyllum striatum. After 8 weeks, mycelia suspended in a defined liquid medium had produced 27.3, 18.5, and 6.7% 14CO2 from [14C]enrofloxacin labeled either at position C-2, at position C-4, or in the piperazinyl moiety, respectively. Enrofloxacin, applied at 10 ppm, was transformed into metabolites already after about 1 week. The most stable intermediates present in 2-day-old supernatants were analyzed by high-performance liquid chromatography combined with electrospray ionization mass spectrometry. Eight of 11 proposed molecular structures could be confirmed by 1H nuclear magnetic resonance spectroscopy or by cochromatography with reference compounds. We identified (i) 3-, 6-, and 8-hydroxylated congeners of enrofloxacin, which have no or only very little residual antibacterial activity; (ii) 5,6- (or 6,8-), 5,8-, and 7,8-dihydroxylated congeners, which were prone to autoxidative transformation; (iii) an isatin-type compound as well as an anthranilic acid derivative, directly demonstrating cleavage of the heterocyclic core of enrofloxacin; and (iv) 1-ethylpiperazine, the 7-amino congener, and desethylene-enrofloxacin, representing both elimination and degradation of the piperazinyl moiety. The pattern of metabolites implies four principle routes of degradation which might be simultaneously employed. Each route, initiated by either oxidative decarboxylation, defluorination, hydroxylation at C-8, or oxidation of the piperazinyl moiety, may reflect an initial attack by hydroxyl radicals at a different site of the drug. During chemical degradation of [4-14C]enrofloxacin with Fenton's reagent, five confirmatory metabolites, contained in groups i and iv, were identified. These findings provide new evidence in support of the hypothesis that brown rot fungi may be capable of producing hydroxyl radicals, which could be utilized to degrade wood and certain xenobiotics.  相似文献   

3.
The degradation of phenanthrene and pyrene was investigated by using five different wood-decaying fungi. After 63 days of incubation in liquid culture, 13.8 and 4.3% of the [ring U-14C]phenantherene and 2.4 and 1.4% of the [4,5,9,10-14C]pyrene were mineralized by Trametes versicolor and Kuehneromyces mutabilis, respectively. No 14CO2 evolution was detected in either [14C]phenanthrene or [14C]pyrene liquid cultures of Flammulina velutipes, Laetiporus sulphureus, and Agrocybe aegerita. Cultivation in straw cultures demonstrated that, in addition to T. versicolor (15.5%) and K. mutabilis (5.0%), L. sulphureus (10.7%) and A. aegerita (3.7%) were also capable of mineralizing phenanthrene in a period of 63 days. Additionally, K. mutabilis (6.7%), L. sulphureus (4.3%), and A. aegerita (3.3%) mineralized [14C]pyrene in straw cultures. The highest mineralization of [14C] pyrene was detected in straw cultures of T. versicolor (34.1%), which suggested that mineralization of both compounds by fungi may be independent of the number of aromatic rings. Phenanthrene and pyrene metabolites were purified by high-performance liquid chromatography and identified by UV absorption, mass, and 1H nuclear magnetic resonance spectrometry. Fungi capable of mineralizing phenanthrene and pyrene in liquid culture produced enriched metabolites substituted in the K region (C-9,10 position of phenanthrene and C-4,5 position of pyrene), whereas all other fungi investigated produced metabolites substituted in the C-1,2, C-3,4, and C-9,10 positions of phenanthrene and the C-1 position of pyrene.  相似文献   

4.
Supernatants of mycelial cultures of seven basidiomycetous fungi indigenous to agricultural sites were evaluated for metabolites generated from the veterinary fluoroquinolone enrofloxacin (EFL) by employing high–performance liquid chromatography/high–resolution electrospray ionization mass spectrometry. From exact masses, molecular formulae were derived, and the most probable chemical structures were deduced. Patterns of major metabolites were surprisingly similar but differed greatly from that provided by Gloeophyllum striatum due to the absence of monohydroxylated EFL congeners and a greater variety of metabolites with a modified piperazine moiety. The structures of three metabolites were elucidated by 1H–nuclear magnetic resonance spectroscopy. Of 61 compounds detected, 48 were new, while 13 were known from a pattern of 87 EFL metabolites identified for G. striatum. Ethylpiperazine moieties carrying oxido, hydroxy, oxo, and acetoxy groups, or showing partial degradation, were linked to the unmodified, oxidatively decarboxylated, or multiply hydroxylated core of EFL and to isatin– and anthranilic acid–type EFL congeners. Cleavage of the fluoro–aromatic bond was observed for two, 14CO2 formation for six species. Metabolites with a hydroxylated aromatic part implied subsequent ring cleavage to be brought about by the formation of potentially four oxidizable ortho–aminophenol– and one catechol–type intermediates. EFL degradation appears to be a common activity among basidiomycetes.  相似文献   

5.
A series of 7beta-[(Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamid o]cephalosporins having a pyridine ring connected through various spacer moieties at the C-3 position was designed and synthesized and evaluated for antibacterial activity and oral absorption in rats. All compounds showed potent antibacterial activity against Staphylococcus aureus, whereas antibacterial activity against gram-negative bacteria was markedly influenced by the spacer moiety between the pyridine and cephem nucleus. Oral absorption was influenced by the position of the pyridine nitrogen as well as by the spacer moiety. Among these compounds, FR86830 (14), having a 4-pyridylmethylthio moiety at the C-3 position, showed the most well balanced activity and moderate oral absorption.  相似文献   

6.
Naturally occurring plant products belonging to different chemical classes namely alizarin, an anthraquinone, caffeine, a methylxanthine derivative and quercetin, a flavonol were studied for their effect on elimination of metabolites of [14C]-N-nitrosodiethylamine (14C-NDEA) through respiration in mice. Treatment with caffeine, quercetin and alizarin at doses of 200, 9 and 9 microg/ml respectively, in drinking water enhanced the exhalation of 14CO2, one of the major end products of NDEA metabolism. Radioactive CO2 exhaled in 60 min increased by 2, 1.61 and 1.4-folds in animals treated with caffeine, quercetin and alizarin for 8 weeks respectively. This increase in exhalation in caffeine-treated animals was achieved even in 2 weeks. These compounds had no adverse effects on the absorption of radioactive NDEA from the gut of the animals as shape and time of 14CO2 peak was similar in i.p. and orally administered [14C-NDEA]. Increased detoxification/elimination of the carcinogen could be one of the mechanisms for the anticarcinogenic properties of these phytochemicals in lung tumorigenesis induced by orally administered NDEA.  相似文献   

7.
Pea leaves were illuminated in air containing 150 or 1000p.p.m. of 14CO2 for various times. Alternatively, segments of wheat leaves were supplied with [3-14C]serine for 40 min in the light in air with 145, 326 or 944p.p.m. of 12CO2. Sucrose was extracted from the leaf material, hydrolysed with invertase, and 14C in the pairs of carbon atoms C-3+C-4, C-2+C-5 and C-1+C-6 in the glucose moiety was measured. The results obtained after metabolism of 14CO2 were consistent with the operation of the photosynthetic carbon-reduction cycle; the effects of CO2 concentration on distribution of 14C in the carbon chain of glucose after metabolism of [3-14C]serine is more easily explained by metabolism through the glycollate pathway than by the carbon-reduction cycle.  相似文献   

8.
Alterations of the C-12 and C-13 aromatic ring substituents of totarol (1) afforded the series of derivatives 2-14, and introduction of substituents at C-12 gave exclusively 2a-14a. The majority of these analogues were tested in vitro against the following organisms: beta-lactamase-positive and high level gentamycin-resistant Enterococcus faecalis, penicillin-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), and multiresistant Klebsiella pneumoniae. The results were evaluated in terms of structure-activity relationship which reveals that: (a) the phenolic moiety at C-13, in general, is essential for antibacterial activity at < 32 microg/mL against gram-positive species, and (b) derivatization at C-12 has an undesirable effect on the antibacterial activity of this class of compounds, while (c) all compounds tested are ineffective against the gram-negative Klebsiella pneumoniae.  相似文献   

9.
Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone.  相似文献   

10.
Extensive biodegradation of hexahydro-1,3,5 -trinitro-1,3,5 -triazine (RDX) by the white-rot fungus Phanerochaete chrysosporium in liquid and solid matrices was observed. Some degradation in liquid occurred under nonligninolytic conditions, but was approximately 10 times higher under ligninolytic conditions. Moreover, elimination was accounted for almost completely as carbon dioxide. No RDX metabolites were detected. The degradation rates in liquid appeared to be limited to RDX concentration in solution (approximately 80 mg/L), but degradation rates in soil were nonsaturable to 250 mg/kg. Manganese-dependent peroxidase (MnP) and cellobiose dehydrogenase (CDH) from P. chrysosporium, but not lignin peroxidase, were able to degrade RDX. MnP degradation of RDX required addition of manganese, but CDH degraded RDX anaerobically without addition of mediators. Attempts to improve biodegradation by supplementing cultures with micronutrients showed that addition of manganese and oxalate stimulated degradation rates in liquid, sawdust, and sand by the fungus, but not in loam soil. RDX degradation by P. chrysosporium in sawdust and sand was better than observed in liquid. However, degradation in solid matrices by the fungus only began after a lag period of 2 to 3 weeks, during which time extractable metabolites from wood were degraded.  相似文献   

11.
Pentose cycle and reducing equivalents in rat mammary-gland slices   总被引:14,自引:13,他引:1       下载免费PDF全文
1. Slices of mammary gland of lactating rats were incubated with glucose labelled uniformly with (14)C and in positions 1, 2, 3 and 6, and with (3)H in all six positions. Glucose carbon atoms are incorporated into CO(2), fatty acids, lipid glycerol, the glucose and galactose moieties of lactose, lactate, soluble amino acids and proteins. C-3 of glucose appears in fatty acids. The incorporation of (3)H into fatty acids is greatest from [3-(3)H]glucose. (3)H from [5-(3)H]glucose appears, apart from in lactose, nearly all in water. 2. The specific radioactivity of the galactose moiety of lactose from [1-(14)C]- and [6-(14)C]-glucose was less, and that from [2-(14)C]- and [3-(14)C]-glucose more, than that of the glucose moiety. There was no randomization of carbon atoms in the glucose moiety, but it was extensive in galactose. 3. The pentose cycle was calculated from (14)C yields in CO(2) and fatty acids, and from the degradation of galactose from [2-(14)C]glucose. A method for the quantitative determination of the contribution of the pentose cycle, from incorporation into fatty acids from [3-(14)C]glucose, is derived. The rate of the reaction catalysed by hexose 6-phosphate isomerase was calculated from the randomization pattern in galactose. 4. Of the utilized glucose, 10-20% is converted into lactose, 20-30% is metabolized via the pentose cycle and the rest is metabolized via the Embden-Meyerhof pathway. About 10-15% of the triose phosphates and pyruvate is derived via the pentose cycle. 5. The pentose cycle is sufficient to provide 80-100% of the NADPH requirement for fatty acid synthesis. 6. The formation of reducing equivalents in the cytoplasm exceeds that required for reductive biosynthesis. About half of the cytoplasmic reducing equivalents are probably transferred into mitochondria. 7. In the Appendix a concise derivation of the randomization of C-1, C-2 and C-3 as a function of the pentose cycle is described.  相似文献   

12.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

13.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

14.
The pattern of incorporation of radioactivity from [1-14C]acetate and [2-14C]acetate into the polyprenyl side-chain of ubiquinones in bacteria (Azotobacter vinelandii, Pseudomonas sesami, Escherichia coli and Rhodopseudomonas capsulata) was studied. For this purpose, a new degradation method involving a modified Barbier-Wieland reaction of laevulinic acid was developed, and used along with the iodoform reaction. Both C-1 and C-2 of acetate were incorporated exclusively into C-2 of laevulinic acid suggesting that the well-known pathway through acetoacetyl-CoA ('acetoacetate pathway') was not operative in these bacteria. An alternative pathway ('acetolactate pathway'), starting with pyruvate and acetaldehyde as the distal precursors, and utilizing the reactions of leucine and valine metabolism, was postulated. It was also postulated that C-1 of acetate is incorporated not directly, but after oxidation to CO2. The pattern of incorporation of radioactivity from [U-14C]valine, [U-14C]alanine and NaH14CO3 into the side-chain of ubiquinone of R. capsulata was in agreement with the operation of the 'acetolactate pathway'.  相似文献   

15.
Physiological heme degradation is mediated by the heme oxygenase system consisting of heme oxygenase and NADPH-cytochrome P-450 reductase. Biliverdin IX alpha is formed by elimination of one methene bridge carbon atom as CO. Purified NADPH-cytochrome P-450 reductase alone will also degrade heme but biliverdin is a minor product (15%). The enzymatic mechanisms of heme degradation in the presence and absence of heme oxygenase were compared by analyzing the recovery of 14CO from the degradation of [14C]heme. 14CO recovery from purified NADPH-cytochrome P-450 reductase-catalyzed degradation of [14C]methemalbumin was 15% of the predicted value for one molecule of CO liberated per mole of heme degraded. 14CO2 and [14C]formic acid were formed in amounts (18 and 98%, respectively), suggesting oxidative cleavage of more than one methene bridge per heme degraded, similar to heme degradation by hydrogen peroxide. The reaction was strongly inhibited by catalase, but superoxide dismutase had no effect. [14C]Heme degradation by the reconstituted heme oxygenase system yielded 33% 14CO. Near-stoichiometric recovery of 14CO was achieved after addition of catalase to eliminate side reactions. Near-quantitative recovery of 14CO was also achieved using spleen microsomal preparations. Heme degradation by purified NADPH-cytochrome P-450 reductase appeared to be mediated by hydrogen peroxide. The major products were not bile pigments, and only small amounts of CO were formed. The presence of heme oxygenase, and possibly an intact membrane structure, were essential for efficient heme degradation to bile pigments, possibly by protecting the heme from indiscriminate attack by active oxygen species.  相似文献   

16.
We examined the structural determinants of phomactin analogs to assess their efficacy as antagonist of PAF. Six analogs of phomactin were synthesized to determine their inhibitory effects on adhesion, superoxide release, leukotriene C4 (LTC4) synthesis and [3H]PAF binding in human eosinophils. Phomactin analogs inhibited both PAF- and IL-5-induced eosinophil adhesion. Analog A, which bears an alkene moiety between C-1 and C-14, a ketone at the C-2 position, and an alkyne moiety between C-3 and C-4, had the greatest anti-adhesive effect. Change of the alkene between C-1 and C-14 to an alkane (analog I) decreased the anti-adhesive effect by 2.5-4 fold, while substitution of ketone by hydroxyl (analog G) at the C-2 position caused an 11-fold decrease in the anti-adhesive effect. Substitution of the alkyne moiety between C-3 and C-4 by an alkene (B and E) or alkane (D) blocked completely the anti-adhesive effect. Analogs A and I completely blocked superoxide release from eosinophils caused by phorbol-12-myristate-13-acetate or PAF and LTC4-release caused by fMLP plus cytochalasin B. Change of the alkyne moiety between C-3 and C-4 to an alkene (B and E) or alkane (D) blocked completely these inhibitory effects of phomactin. Analog A decreased the maximal binding of [3H]PAF binding to eosinophils without change of the apparent dissociation constant. We conclude that phomactin analogs are specific non-competitive PAF antagonists and have exceptional efficacy in inhibiting adhesion, metabolic activity and leukotriene secretion in human eosinophils. We further define the structural alterations in the phomactin molecule that regulate its inhibitory functions.  相似文献   

17.
Novel piperidinyloxy oxazolidinone antimicrobial agents.   总被引:1,自引:0,他引:1  
Oxazolidinone antibacterial agents, where the N-substituted piperazinyl group of eperezolid was replaced with a N-substituted piperidinyloxy moiety, were synthesized and shown to be active against a variety of resistant and susceptible Gram-positive organisms. The effect of ring size, positional isomerism, and fluorine substitution on antibacterial activity was examined.  相似文献   

18.
Treatment of enol acetates of 3beta-acetoxyandrost-5-en-17-one and its 5alpha-reduced analog, 5alpha-androstan-17-one, and estrone acetate, 1-4, with Pb(OCOCH(3))(4) in acetic acid and acetic anhydride gave the previously unreported products, 16beta-(acetoxy)acetoxy-17-ketones 8-10 and 12, in 9-15% yields along with the known major products, 16beta-acetoxy-17-ketones 5-7 and 11. Similar treatment of the 16beta-acetoxy-17-ketones with the lead reagent did not yield the corresponding (acetoxy)acetates. Reaction of the enol acetate 3 with Pb(OCOCD(3))(4) in CD(3)COOD yielded principally the labeled (acetoxy)acetate 10-d(3), which had a CD(3)COOCH(2)COO moiety at C-16beta. In contrast, when the deuterated enol acetate 3-d(3), which was obtained by treatment of the 17-ketone 14 with (CD(3)CO)(2)O in the presence of LDA and which had a CD(3)COO moiety at C-17, was reacted with Pb(OCOCH(3))(4), the resulting product was the labeled compound 10-d(2). This product had a CH(3)COOCD(2)COO function at C-16beta. Based on these results, along with further isotope-labeling experiments, it seems likely that the (acetoxy)acetate is produced through a lead (IV) acetate-catalyzed migration of the 17-acetyl function of the enol acetate to the C-16beta-position followed by attack of an acetoxy anion of the lead reagent.  相似文献   

19.
Glyphosate catabolism by Pseudomonas sp. strain PG2982.   总被引:7,自引:0,他引:7       下载免费PDF全文
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 47% of the assimilated label is distributed to proteins and that the amino acids methionine and serine are highly labeled. Adenine and guanine received 90% of the C-3 label found in the nucleic acid fraction, and the only pyrimidine base labeled was thymine. These results indicated that C-3 of glyphosate was at some point metabolized to a C-1 compound whose ultimate fate could be both oxidation to CO2 and distribution to amino acids and nucleic acid bases that receive a C-1 group from the C-1-donating coenzyme tetrahydrofolate. Pulse-labeling of PG2982 cells with [3-14C]glyphosate resulted in the isolation of [3-14C]sarcosine as an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of a sarcosine-oxidizing enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. This pathway is supported by the results of [1,2-14C]glyphosate metabolism studies, which show that radioactivity in the proteins of labeled cells is found only in the glycine and serine residues.  相似文献   

20.
Natural products serve as a great reservoir for chemical diversity and are the greatest source for antibacterial agents. Recent discoveries of platensimycin and platencin as inhibitors of bacterial fatty acid biosynthesis enzymes supplied new chemical scaffolds for potential antibacterial agents to overcome resistant pathogens. Discovery of natural congeners augment chemical modification in understanding of structure–activity relationship (SAR). Chemical and biological screening of the extracts led to isolation of three hydroxylated analogs of platencin. The C-12, C-14 and C-15 hydroxylated analogs showed attenuated activities which provided significant understanding of functional tolerance in the diterpenoid portion of the molecule. A truncated and oxidized C-13 natural congener was isolated which suggested direct intermediacy of ent-copalyl diphosphate for the biosynthesis of platensimycins and platencins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号