首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thiyl radicals are shown to be readily trapped with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (TMPO) giving characteristic spin adducts with hyperfine coupling constants aN 1.52-1.58, aH 1.52-1.80 mT, and g values in the range 2.0065-2.0067 for the DMPO adducts and aN 1.50-1.56, aH 1.70-1.92 mT, g 20049-2.0051 for the TMPO adducts. Kinetic data obtained from pulse radiolysis studies show that, in general, thiyl radicals react rapidly with these spin traps with rate constants of the order of 10(7)-10(8) dm3 mol-1 s-1. The tetramethylated spin trap TMPO though giving slightly less intense electron spin resonance (ESR) spectra, produces longer lived adducts, and is suggested to be of greater utility due to the more characteristic nature of the coupling constants of the observed adducts; reaction of certain thiyl radicals with DMPO produces adducts which are superficially similar to the hydroxyl radical adduct to the same trap.  相似文献   

2.
ESR spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to directly detect alkoxyl radicals (with hyperfine coupling constants aN 1.488, aH 1.600 mT and aN 1.488, aH 1.504 mT for the tBuO. and PhC(CH3)2O. adducts, respectively) and peroxyl radicals (aN 1.448, aH 1.088, aH 0.130 mT and aN 1.456, aH 1.064, aH 0.128 mT for the tBuOO. and PhC(CH3)2OO. adducts, respectively) produced from t-butyl or cumene hydroperoxides by a variety of heme-containing substances (purified cytochrome P-450, metmyoglobin, oxyhemoglobin, methemoglobin, cytochrome c, catalase, horseradish peroxidase) and the model compound hematin. The observed species exhibit a complicated dependence on reagent concentrations and time, with maximum concentrations of the peroxyl radical adducts being observed immediately after mixing of the hydroperoxide with low concentrations of the heme-compound. Experiments with inhibitors (CN-, N3-, CO, metyrapone and imidazole) suggest that the major mechanism of peroxyl radical production involves high-valence-state iron complexes in a reaction analogous to the classical peroxidase pathway. The production of alkoxyl radicals is shown to arise mainly from the breakdown of peroxyl radical spin adducts, with direct production from the hydroperoxide being a relatively minor process.  相似文献   

3.
We have used the spin trap 5,5-dimethyl-pyrroline-1-oxide (DMPO) and EPR to detect lipid-derived radicals (Ld*) during peroxidation of polyunsaturated fatty acids (PUFA), low-density lipoprotein (LDL), and cells (K-562 and MCF-7). All oxygen-centered radical adducts of DMPO from our oxidizable targets have short lifetimes (<20 min). We hypothesized that the short lifetimes of these spin adducts are due in part to their reaction with radicals formed during lipid peroxidation. We proposed that stopping the lipid peroxidation processes by separating oxidation-mediator from oxidation-substrate with an appropriate extraction would stabilize the spin adducts. To test this hypothesis we used ethyl acetate to extract the lipid-derived radical adducts of DMPO (DMPO/Ld*) from an oxidizing docosahexaenioc acid (DHA) solution; Folch extraction was used for LDL and cell experiments. The lifetimes of DMPO spin adducts post-extraction are much longer (>10 h) than the spin adducts detected without extraction. In iron-mediated DHA oxidation we observed three DMPO adducts in the aqueous phase and two in the organic phase. The aqueous phase contains DMPO/HO* aN approximately aH approximately 14.8 G) and two carbon-centered radical adducts (aN1 approximately 15.8 G, aH1 approximately 22.6 G; aN2 approximately 15.2 G, aH2 approximately 18.9 G). The organic phase contains two long-chain lipid radical adducts (aN approximately 13.5 G, aH approximately 10.2 G; and aN approximately 12.8 G; aH approximately 6.85 G, 1.9 G). We conclude that extraction significantly increases the lifetimes of the spin adducts, allowing detection of a variety of lipid-derived radicals by EPR.  相似文献   

4.
The interaction of hypochlorite with linoleic acid hydroperoxides was studied by the coumarin C-525-enhanced chemiluminescence and ESR spin trapping techniques. Linoleic acid hydroperoxide was obtained in the reaction of lipoxygenase and linoleic acid. Alpha-(4-pyridyl-1-oxyl)-N-tert Butylnitron was used as a spin trap. It was shown that the addition of hypochlorite to the incubation media containing linoleic acid and lipoxygenase resulted in an intensive chemiluminescence flash. The intensity of this flash correlated with the hydroperoxide concentration. The analysis of ESR spectra of spin adducts produced in the reaction of hypochlorite with linoleic acid hydroperoxide showed the presence of O-centered, most likely peroxyl, radical with the splitting constants alphabetaH = 0.260 mT aN = 1.662 mT and C-centered penthyl radical with the splitting constants alphabetaH = 0.260 mT; aN = 1.662 mT. These data suggest that hypochlorite produced by phagocytes in vivo can induce the generation of free O- and C-centered radicals, promoters of free radical processes.  相似文献   

5.
2-Methyl-2-nitrosopropane (tNB)-radical adducts from incubation mixtures of fatty acids and soybean lipoxygenase in borate buffer (pH 9.0) were measured by electron paramagnetic resonance (EPR). In addition to the previously reported six-line signal of secondary carbon-centered radicals (RCHR'), a weak signal submerged in the baseline was detected after the peroxidation phase was finished. We propose that this radical is a decomposition product formed via beta-scission of fatty acid alkoxyl radicals. EPR spectra of tNB-radical adducts formed in mixtures of either linoleic acid, arachidonic acid, or 15-hydroperoxyeicosatetraenoic acid with lipoxygenase exhibited hyperfine structure characteristic of tNB/.CH2CH2-R with hyperfine coupling constants: aN = 17.1 G; aH beta = 11.2 G (2H); and aH gamma = 0.6 G (2H). In the case of linolenic acid, this radical tNB/.CH=CH-R' with hyperfine coupling constants: aN = 17.1 G; aH beta = 10.9 G (2H); aH gamma = 1.1 G; and aH delta = 0.5 G. In accord with the decomposition scheme of hydroperoxides derived from unsaturated fatty acids, the radical adducts tNB/.CH2CH2-R and tNB/.CH2-CH=CH-R' were assigned as the pentyl and 2-pentenyl radicals, respectively.  相似文献   

6.
The ratio of the nitrogen to hydrogen hyperfine splittings (aN/aH) of spin adducts derived from the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) has been found to be a useful parameter for adduct identification. For example, this parameter makes it possible to distinguish between the superoxide (aN/aH = 1.22-1.26) and peroxyl (aN/aH = 1.33-1.40) radical adducts of DMPO in aqueous solution. Since the aN to aH ratio corrects for minor differences in EPR spectrometer calibration, it is a more reproducible parameter than the aN and aH values themselves.  相似文献   

7.
Electron paramagnetic resonance (EPR) spin trapping was used to detect lipid-derived free radicals generated by iron-induced oxidative stress in intact cells. Using the spin trap alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN), carbon-centered radical adducts were detected. These lipid-derived free radicals were formed during incubation of ferrous iron with U937 cells that were enriched with docosahexaenoic acid (22:6n-3). The EPR spectra exhibited apparent hyperfine splittings characteristic of a POBN/alkyl radical, aN = 15.63 +/- 0.06 G and aH = 2.66 +/- 0.03 G, generated as a result of beta-scission of alkoxyl radicals. Spin adduct formation depended on the FeSO4 content of the incubation medium and the number of 22:6-enriched cells present; when the cells were enriched with oleic acid (18:1n-9), spin adducts were not detected. This is the first direct demonstration, using EPR, of a lipid-derived radical formed in intact cells in response to oxidant stress.  相似文献   

8.
The formation of radical species during the reaction of ter-tbutyl hydroperoxide and hypochlorous acid has been investigated by spin trapping and chemiluminescence. A superposition of two signals appeared incubating tert-butyl hydroperoxide with hypochlorous acid in the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The first signal (aN = 1.537 mT, aH beta = 0.148 mT) was an oxidation product of POBN caused by the action of hypochlorous acid. The second spin adduct (aN = 1.484 mT, aH beta = 0.233 mT) was derived from a radical species that was formed in the result of reaction of tert-butyl hydroperoxide with hypochlorous acid. Similarly, a superposition of two signals was also obtained using the spin trap N-tert-butyl-alpha-phenylnitrone (PBN). tert-Butyl hydroperoxide was also treated with Fe2+ or Ce4+ in the presence of POBN. Using Fe2+ a spin adduct with a N = 1.633 mT and aH beta = 0.276 mT was observed. The major spin adduct formed with Ce4+ was characterised by a N = 1.480 mT and aH beta = 0.233 mT. The reaction of tert-butyl hydroperoxide with hypochlorous acid was accompanied by a light emission, that time profile and intensity were identical to those emission using Ce4+. The addition of Fe2+ to tert-butyl hydroperoxide yielded a much smaller chemiluminescence. Thus, tert-butyl hydroperoxide yielded in its reaction with hypochlorous acid or Ce4+ the same spin adduct and the same luminescence profile. Because Ce4+ is known to oxidize organic hydroperoxides to peroxyl radical species, it can be concluded that a similar reaction takes place in the case of hypochlorous acid.  相似文献   

9.
Lipid peroxidation by managanese peroxidase (MnP) is reported to decompose recalcitrant polycyclic aromatic hydrocabon (PAH) and nonphenolic lignin models. To elucidate the oxidative process, linoleic acid and 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid [13(S)-HPODE] were reacted with MnPs from Ceriporiopsis subvermispora and Bjerkandera adusta and the free radicals produced were analyzed by ESR. When the MnPs were reacted with 13(S)-HPODE in the presence of Mn(II), H2O2 and tert-nitrosobutane (t-NB), the ESR spectrum contained a sharp triplet of acyl radical (aN = 0.81 mT). Formation of acyl radical was also observed in the reactions of Mn(III)-tartrate with 13(S)-HPODE and with linoleic acid, but the latter reaction occurred explosively after an induction period of around 30 min. Reactions of MnP with linoleic acid in the presence of Mn(II), H2O2 and t-NB gave no spin adducts while addition of t-NB after preincubation of linoleic acid with MnP/Mn(II)/H2O2 for 2 h gave spin adducts of carbon-centered (aN = 1.53 mT, aH = 0.21 mT) and acyl (aN = 0.81 mT) radicals. In contrast to linoleic acid, methyl linoleate and oleic acid were not peroxidized by MnP and chelated Mn(III) within a few hours, indicating that structures containing both the 1,4-pentadienyl moiety and a free carboxyl group are necessary for inducing the peroxidation in a short reaction time. These results indicate that MnP-dependent lipid peroxidation is not initiated by direct abstraction of hydrogen from the bis-allylic position during turnover but proceeds by a Mn(III)-dependent hydrogen abstraction from enols and subsequent propagation reactions involving the formation of acyl radical from lipid hydroperoxide. This finding expands the role of chelated Mn(III) from a phenol oxidant to a strong generator of free radicals from lipids and lipid hydroperoxides in lignin biodegradation.  相似文献   

10.
Aminoxyl radicals are formed in high yield in the reaction between penicillins and hydrogen peroxide in water solutions in the pH range between 7 and 8. The nine-line EPR spectrum, 3 x 3 (1:2:1), indicated an interaction of the unpaired electron with one 14N nucleus (aN = 1.44 mT) and two equivalent hydrogen nuclei (aH = 2.00 mT). The reaction involves an oxidative cleavage of the beta-lactam ring of the penicillins with the formation of a cyclic aminoxyl radical, in which the thiazolidine ring carries the nitroxide group (= N-O.). It is suggested that the reaction with the formation of aminoxyl radicals can also take place in vivo in the deactivation of penicillins by metabolically formed hydrogen peroxide.  相似文献   

11.
A J Carmichael 《FEBS letters》1990,261(1):165-170
Vanadyl (VO2+) complexed to RNA reacts with hydrogen peroxide in a Fenton-like manner producing hydroxyl radicals (.OH). The hydroxyl radicals can be spin trapped with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) forming the DMPO-OH spin adduct. In addition, in the presence of ethanol the formation of the hydroxyethyl radical adduct of DMPO (DMPO-ETOH) confirms the production of hydroxyl radicals by the RNA/VO2+ complex. When the reaction between the RNA/VO2+ complex and H2O2 is carried out in the presence of the spin trap 2-methyl-2-nitrosopropane (MNP), radicals produced in the reaction of .OH with RNA are trapped. Base hydrolysis of the MNP-RNA adducts (pH 12) followed by a reduction in the pH to pH 7 after hydrolysis is complete, yields an MNP adduct with a well-resolved ESR spectrum identical to the ESR spectrum obtained from analogous experiments with poly U. The ESR spectrum consists of a triplet of sextets (aN = 1.48 mT, a beta N = 0.25 mT and a beta H = 0.14 mT), indicating that the unpaired nitroxide electron interacts with the nuclei of a beta-nitrogen and beta-hydrogen. The results suggest that the .OH generated in the RNA/VO2+ reaction with H2O2 add to the C(5) carbon of uracil forming a C(6) carbon centered radical. This radical is subsequently spin trapped by MNP.  相似文献   

12.
Real-time monitoring of spin-trapped oxygen-derived free radicals released by the isolated ischemic and reperfused rat heart has been achieved by ESR analysis of the coronary effluents using continuous flow detection and high-speed acquisition techniques. Two nitrone spin traps 5,5-dimethyl pyrroline 1-oxide (Me2PnO) and 3,3,5,5-tetramethyl pyrroline 1-oxide (MePnO) have been separately perfused at a concentration of 40 mM during a sequence of 50 min of low-flow ischemia (1 ml/min) followed by 30 min of global ischemia and subsequent reperfusion at the control flow rate (14 ml/min). ESR spectra were sequentially obtained in 5-min or 30-s blocks during low-flow ischemia and reperfusion, respectively. 1. The results show the formation of OH. free radicals in the ischemic and reperfused heart, as demonstrated by the observation of Me2PnO-OH (aN = aH = 14.9 G; g = 2.0053) and Me4PnO-OH (aN = 15.2 G, aH = 16.8 G; g = 2.0055) spin adducts. There is no evidence of significant biological carbon-centered or peroxyl free radicals spin-adduct formation in the coronary effluents or in lipid extracts analyzed after reflow. 2. The OH. generation began 15-20 min after the onset of ischemia and was moderate, peaking at 30-40 min. During reperfusion, an intense formation of OH. spin adducts was observed, with a maximum at 30-60 s and a further gradual decrease over the following 2 min. 3. Cumulative integrated values of the amount of spin adducts released during the ischemic period show a Me2PnO-OH level fourfold greater than that of Me4PnO-OH. It was 2.5 times greater during reflow, reflecting slower kinetics with the more stable Me4PnO. 4. The original ESR detection technique developed in this study allows accurate real-time quantitative monitoring of the oxygen-derived free radicals generated during myocardial injury. It might provide a quick and reliable new means for assessing the efficacy of free-radical inhibitors.  相似文献   

13.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DMPO) demonstrate the formation of .OH and R. free radicals in the reperfused heart. EPR signals of DMPO-OH, aN = aH = 14.9 G, and DMPO-R aN = 15.8 G aH = 22.8 G are observed, with peak concentrations during the first minute of reperfusion. It is demonstrated that these radicals are derived from .O2- since reperfusion in the presence of enzymatically active recombinant human superoxide dismutase markedly reduced the formation of these signals while inactive recombinant human superoxide dismutase had no effect. On reperfusion with perfusate pretreated to remove adventitial iron, the concentration of the DMPO-OH signal was increased 2-fold and a 4-fold decrease in the DMPO-R signal was observed demonstrating that iron-mediated Fenton chemistry occurs. Hearts reperfused with recombinant human superoxide dismutase exhibited improved contractile function in parallel with the marked reduction in measured free radicals. In order to determine if the reperfusion free radical burst results in impaired contractile function, simultaneous measurements of free radical generation and contractile function were performed. A direct relationship between free radical generation and subsequent impaired contractile function was observed. These studies suggest that superoxide derived .OH and R. free radicals are generated in the reperfused heart via Fenton chemistry. These radicals appear to be key mediators of myocardial reperfusion injury.  相似文献   

14.
《Free radical research》2013,47(3-6):315-324
Studies using free radical scavengers and measurements of lipid peroxidation have suggested that free radicals are generated during endotoxemia. Conclusions from these studies have implied that free radicals may participate in the sequence of pathologic events following endotoxin challenge in the experimental animal. Current inferences of free radical generation and involvement have been derived from indirect evidence and are therefore inconclusive. To quantitate the generation of free radicals in vivo during endotoxemia this study employed the use of electron paramagnetic resonance spectroscopy (EPR) combined with spin trapping techniques. Five minutes before intraperitoneal endotoxin administration, trimethoxy-a-phenyl-t-butyl-nitrone [(MeO), PBN] was administered intraperitoneally. Experimental animals were always matched with control animals receiving no endotoxin. At either five minutes or twenty-five minutes following endotoxin administration animals were decapitated and hearts and livers were rapidly taken for lipid extraction and EPR evaluation. Analysis of the EPR spectra revealed hyperfine splitting constants that indicated the presence of carbon-centered radical spin adducts in both organ tissues from animals exposed to endotoxin for twenty-five minutes. No signals were present in hearts and livers taken five minutes after endotoxin administration. EPR evaluation did not indicate spin adduct formation in control tissue. These data directly demonstrate that activation of processes in vivo involving free radical generation occur early during endotoxemia, but are not detectable immediately after the endotoxin challenge.  相似文献   

15.
To elucidate the mechanism of sunlight-induced skin damage, guinea pigs were exposed to UV light (280-320 nm, UV B, 4 J/cm2) and a homogenate of the epidermis was examined by means of the thiobarbituric acid (TBA) test. Three hours after the exposure, TBA-malondialdehyde adducts had increased while glutathione reductase activity had decreased, indicating lipid peroxidation. To detect the initial species, spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was applied to a suspension of illuminated epidermal cells (0.5 J/cm2). An ESR signal obtained only with irradiation comprised a 1:2:2:1 quartet [a(N)= a(beta H) = 1.49 mT] attributable to a spin adduct of hydroxyl radicals. These results suggest that sunlight exposure of skin may lead to hydroxyl radical generation and simultaneous lipid peroxidation.  相似文献   

16.
A new approach for in vivo spin trapping and quantitation of oxygen-derived free radicals has been developed using a continuous flow high speed ESR detection system. Spin adducts of OH. were detected as 1:1:1:1:1:1 sextets (aN=15.2 G, aH=16.8 G, g=2.0055) in the isolated rat heart when perfused with 3,3,5,5-tetramethyl-1-pyrroline-1-oxide (40 mM) during a 10-min control pretreatment (14 ml/min) followed by 50 min of low-flow ischemia (1 ml/min), 30 min of global ischemia and subsequent reperfusion at 14 ml/min. The ESR signals appeared within 15-20 min of low-flow ischemia and grew moderately during the remaining 30 min at a rate of 2-6 nmoles of spin adduct released per minute. Post-ischemic reperfusion was characterized by a burst of spin adduct formation at 30 s-1 min, corresponding to 51.8 nmoles of spin adduct released between 30 s and 1 min.  相似文献   

17.
In alkaline solutions, nitroalkanes (RCH2NO2) undergo deprotonation and rearrange to an aci anion (RHC=NO2-), which may function as a spin trap. Using electron paramagnetic resonance (EPR) spectroscopy, we have investigated suitability of aci anions of a series of nitroalkanes (CH3NO2, CH3CH2NO2, CH3(CH2)2NO2, and CH3(CH2)3NO2) to spin trap nitric oxide (*NO). Based on the observed EPR spectra, the general structure of the adducts, formed by addition of *NO to RHC=NO2-, was identified as nitronitroso dianion radicals of general formula [RC(NO)NO2]*2- in strong base (0.5 M NaOH), and as a mono-anion radical [RCH(NO)NO2]*- in alkaline buffers, pH 10-13. The hyperfine splitting on 14N in the -NO2 moiety (11.2-12.48 G) is distinctly different from the splitting on 14N in the -NO moiety of the adducts (5.23-6.5 G). The structure of the adducts was verified using 15N-labeled *NO, which produced radicals, in which triplet due to splitting on 14N (I = 1) in 14NO/aci nitro adducts was replaced by a doublet due to 15N (I = 1/2) in 15NO/aci nitro adducts. EPR spectra of aci nitromethane/NO adduct recorded in NaOH and NaOD (0.5 M) showed that the hydrogen at alpha-carbon can be exchanged for deuterium, consistent with structures of the adducts being [CH(NO)NO2]*2- and [CD(NO)NO2]*2-, respectively. These results indicate that nitroalkanes could potentially be used as prototypes for development of *NO-specific spin traps suitable for EPR analysis.  相似文献   

18.
In the present study, we investigated the mechanism of UV-B radiation induced damage to the light harvesting apparatus of the cyanobacterium Synechocystis 6803. Liquid chromatography analysis and spectroscopy investigations performed on phycobilisomes or isolated biliproteins irradiated with moderate UV-B intensity (1.3 W/m(2)) revealed rapid destruction of beta-phycocyanin and a slower damage of the other biliproteins, alpha-phycocyanin and both alpha and beta-allophycocyanin. EPR spin trapping measurements revealed that carbon centered adducts of the spin trap DMPO were formed. This evidence indicates that free radicals produced from bilins probably attack the polypeptide chain of protein inducing its degradation. Our results show that the bilin chromophore is the main target of UV-B irradiation, causing structural changes, which in turn induce reaction of the chromophore with atmospheric oxygen and lead to production of reactive radicals. Our results also demonstrate that beta-phycocyanin is the most affected biliprotein, probably due to the presence of two bilins as chromophore.  相似文献   

19.
Supramolecular complexes between carotenoids and a triterpene glycoside, beta-glycyrrhizic acid (GA), were found to exhibit unusual antioxidant activity. Complexation with GA increases a scavenging rate of canthaxanthin and 7',7'-dicyano-7'-apo-beta-carotene toward OOH radicals more than 10 times, but has no effect on the scavenging rate of zeaxanthin. Scavenging rate constants were measured in DMSO solution of carotenoids using the EPR spin-trapping technique. EPR parameters of spin adducts were determined as a(H) = 2.3 G, a(N) = 13.9 G for PBN (N-tert-butyl-alpha-phenylnitrone)-OOH, and a(H) = 3.4 G, a(N) = 14.9 G for the PBN-CH3 adduct. Taking into account the previously measured dependence of the scavenging rate constants toward OOH radicals on the oxidation potential of carotenoids, this result can be explained by the hypothesis that the complexation with GA affects the value of oxidation potentials. This hypothesis was confirmed by CV measurements.  相似文献   

20.
Proline and hydroxyproline when exposed to the hydroxyl free radical generating system of ADP-Fe(II)-H2O2 yielded long-lived free radicals. An analysis of the electron paramagnetic resonance spectra of the long-lived hydroxyl free radical adducts of proline and hydroxyproline is consistent with a free electron on a nitroxyl group interacting with the nitrogen atom as well as with three separate protons. In the case of proline, nitroxide formation was observed under the influence of tert-butyl-hydroperoxide, giving a similar EPR spectrum (Lin, J.S., Tom, T.C. and Olcott, H.S. (1974) J. Agr. Food Chem. 22, 526-528); however, the hydroxyl free radical adduct of hydroxyproline has not been described yet. In the case of the proline nitroxide radical, two of the three protons involved interact with the free electron equivalently. The coupling constants for the hydroxyl free radical adduct of proline are AN = 1.58 mT, AH1 beta = AH2 beta = 2.13 mT, AH3 beta = 1.77 mT and for hydroxyproline are AN = 1.54 mT, AH1 beta = 2.56 mT, AH2 beta = 2.03 and AH3 beta = 1.51. The data are consistent with the amine nitrogen of proline and hydroxyproline being oxidized to a nitroxyl group and the free electron of the nitroxyl interacting with the beta-protons of these amino acid hydroxyl free radical adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号