首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Small and isolated island populations provide ideal systems to study the effects of limited population size, genetic drift and gene flow on genetic diversity. We assessed genetic diversity within and differentiation among 19 mockingbird populations on 15 Galápagos islands, covering all four endemic species, using 16 microsatellite loci. We tested for signs of drift and gene flow, and used historic specimens to assess genetic change over the last century and to estimate effective population sizes. Within-population genetic diversity and effective population sizes varied substantially among island populations and correlated strongly with island size, suggesting that island size serves as a good predictor for effective population size. Genetic differentiation among populations was pronounced and increased with geographical distance. A century of genetic drift did not change genetic diversity on an archipelago-wide scale, but genetic drift led to loss of genetic diversity in small populations, especially in one of the two remaining populations of the endangered Floreana mockingbird. Unlike in other Galápagos bird species such as the Darwin''s finches, gene flow among mockingbird populations was low. The clear pattern of genetically distinct populations reflects the effects of genetic drift and suggests that Galápagos mockingbirds are evolving in relative isolation.  相似文献   

2.
Recent habitat loss and fragmentation superimposed upon ancient patterns of population subdivision are likely to have produced low levels of neutral genetic diversity and marked genetic structure in many plant species. The genetic effects of habitat fragmentation may be most pronounced in species that form small populations, are fully self-compatible and have limited seed dispersal. However, long-lived seed banks, mobile pollinators and long adult lifespans may prevent or delay the accumulation of genetic effects. We studied a rare Australian shrub species, Grevillea macleayana (Proteaceae), that occurs in many small populations, is self-compatible and has restricted seed dispersal. However, it has a relatively long adult lifespan (c. 30 years), a long-lived seed bank that germinates after fire and is pollinated by birds that are numerous and highly mobile. These latter characteristics raise the possibility that populations in the past may have been effectively large and genetically homogeneous. Using six microsatellites, we found that G. macleayana may have relatively low within-population diversity (3.2-4.2 alleles/locus; Hexp = 0.420-0.530), significant population differentiation and moderate genetic structure (FST = 0.218) showing isolation by distance, consistent with historically low gene flow. The frequency distribution of allele sizes suggest that this geographical differentiation is being driven by mutation. We found a lack mutation-drift equilibrium in some populations that is indicative of population bottlenecks. Combined with evidence for large spatiotemporal variation of selfing rates, this suggests that fluctuating population sizes characterize the demography in this species, promoting genetic drift. We argue that natural patterns of pollen and seed dispersal, coupled with the patchy, fire-shaped distribution, may have restricted long-distance gene flow in the past.  相似文献   

3.
Evidence is growing that human modification of landscapes has dramatically altered evolutionary processes. In urban population genetic studies, urbanization is typically predicted to act as a barrier that isolates populations of species, leading to increased genetic drift within populations and reduced gene flow between populations. However, urbanization may also facilitate dispersal among populations, leading to higher genetic diversity within, and lower differentiation between, urban populations. We reviewed the literature on nonadaptive urban evolution to evaluate the support for each of these urban fragmentation and facilitation models. In a review of the literature with supporting quantitative analyses of 167 published urban population genetics studies, we found a weak signature of reduced within‐population genetic diversity and no evidence of consistently increased between‐population genetic differentiation associated with urbanization. In addition, we found that urban landscape features act as barriers or conduits to gene flow, depending on the species and city in question. Thus, we speculate that dispersal ability of species and environmental heterogeneity between cities contributes to the variation exhibited in our results. However, >90% of published studies reviewed here showed an association of urbanization with genetic drift or gene flow, highlighting the strong impact of urbanization on nonadaptive evolution. It is clear that species biology and city heterogeneity obscure patterns of genetic drift and gene flow in a quantitative analysis. Thus, we suggest that future research makes comparisons of multiple cities and nonurban habitats, and takes into consideration species' natural history, environmental variation, spatial modelling and marker selection.  相似文献   

4.
Colour pattern has served as an important phenotype in understanding the process of natural selection, particularly in brightly coloured and variable species like butterflies. However, different selective forces operate on aspects of colour pattern, for example by favouring warning colours in eyespots or alternatively favoring investment in thermoregulatory properties of melanin. Additionally, genetic drift influences colour phenotypes, especially in populations undergoing population size change. Here, we investigated the relative roles of genetic drift and ecological selection in generating the phenotypic diversity of the butterfly Parnassius clodius. Genome‐wide patterns of single nucleotide polymorphism data show that P. clodius forms three population clusters, which experienced a period of population expansion following the last glacial maximum and have since remained relatively stable in size. After correcting for relatedness, morphological variation is best explained by climatic predictor variables, suggesting ecological selection generates trait variability. Solar radiation and precipitation are both negatively correlated with increasing total melanin in both sexes, supporting a thermoregulatory function of melanin. Similarly, wing size traits are significantly larger in warmer habitats for both sexes, supporting a Converse Bergmann Rule pattern. Bright red coloration is negatively correlated with temperature seasonality and solar radiation in males, and weakly associated with insectivorous avian predators in univariate models, providing mixed evidence that selection is linked to warning coloration and predator avoidance. Together, these results suggest that elements of butterfly wing phenotypes respond independently to different sources of selection and that thermoregulation is an important driver of phenotypic differentiation in Parnassian butterflies.  相似文献   

5.
Genetic studies of recently established populations are challenging because the assumption of equilibrium underlying many analyses is likely to be violated. Using microsatellites, we investigated determinants of genetic structure and migration among invasive European-Chinese mitten crab populations, applying a combination of traditional population genetic analyses and nonequilibrium Bayesian methods. Consistent with their recent history, invasive populations showed much lower levels of genetic diversity than a native Chinese population, indicative of recent bottlenecks. Population differentiation was generally low but significant and especially pronounced among recently established populations. Significant differentiation among cohorts from the same geographical location (River Thames) suggests the low effective population size and associated strong genetic drift that would be anticipated from a very recent colonization. An isolation-by-distance pattern appears to be driven by an underlying correlation between geographical distance and population age, suggesting that cumulative homogenizing gene flow reduces founder bottleneck-associated genetic differentiation between longer-established populations. This hypothesis was supported by a coalescent analysis, which supported a drift + gene flow model as more likely than a model excluding gene flow. Furthermore, admixture analysis identified several recent migrants between the UK and Continental European population clusters. Admixture proportions were significantly predicted by the volume of shipping between sites, indicating that human-mediated transport remains a significant factor for dispersal of mitten crabs after the initial establishment of populations. Our study highlights the value of nonequilibrium methods for the study of invasive species, and also the importance of evaluating nonequilibrium explanations for isolation by distance patterns.  相似文献   

6.
Habitat fragmentation may disrupt original patterns of gene flow and lead to drift-induced differentiation among local population units. Top predators such as the jaguar may be particularly susceptible to this effect, given their low population densities, leading to small effective sizes in local fragments. On the other hand, the jaguar's high dispersal capabilities and relatively long generation time might counteract this process, slowing the effect of drift on local populations over the time frame of decades or centuries. In this study, we have addressed this issue by investigating the genetic structure of jaguars in a recently fragmented Atlantic Forest region, aiming to test whether loss of diversity and differentiation among local populations are detectable, and whether they can be attributed to the recent effect of drift. We used 13 microsatellite loci to characterize the genetic diversity present in four remnant populations, and observed marked differentiation among them, with evidence of recent allelic loss in local areas. Although some migrant and admixed individuals were identified, our results indicate that recent large-scale habitat removal and fragmentation among these areas has been sufficiently strong to promote differentiation induced by drift and loss of alleles at each site. Low estimated effective sizes supported the inference that genetic drift could have caused this effect within a short time frame. These results indicate that jaguars' ability to effectively disperse across the human-dominated landscapes that separate the fragments is currently very limited, and that each fragment contains a small, isolated population that is already suffering from the effects of genetic drift.  相似文献   

7.
Heliconius butterflies represent a recent radiation of species, in which wing pattern divergence has been implicated in speciation. Several loci that control wing pattern phenotypes have been mapped and two were identified through sequencing. These same gene regions play a role in adaptation across the whole Heliconius radiation. Previous studies of population genetic patterns at these regions have sequenced small amplicons. Here, we use targeted next-generation sequence capture to survey patterns of divergence across these entire regions in divergent geographical races and species of Heliconius. This technique was successful both within and between species for obtaining high coverage of almost all coding regions and sufficient coverage of non-coding regions to perform population genetic analyses. We find major peaks of elevated population differentiation between races across hybrid zones, which indicate regions under strong divergent selection. These 'islands' of divergence appear to be more extensive between closely related species, but there is less clear evidence for such islands between more distantly related species at two further points along the 'speciation continuum'. We also sequence fosmid clones across these regions in different Heliconius melpomene races. We find no major structural rearrangements but many relatively large (greater than 1 kb) insertion/deletion events (including gain/loss of transposable elements) that are variable between races.  相似文献   

8.
Ecological speciation proceeds through the accumulation of divergent traits that contribute to reproductive isolation, but in the face of gene flow traits that characterize incipient species may become disassociated through recombination. Heliconius butterflies are well known for bright mimetic warning patterns that are also used in mate recognition and cause both pre- and post-mating isolation between divergent taxa. Sympatric sister taxa representing the final stages of speciation, such as Heliconius cydno and Heliconius melpomene, also differ in ecology and hybrid fertility. We examine mate preference and sterility among offspring of crosses between these species and demonstrate the clustering of Mendelian colour pattern loci and behavioural loci that contribute to reproductive isolation. In particular, male preference for red patterns is associated with the locus responsible for the red forewing band. Two further colour pattern loci are associated, respectively, with female mating outcome and hybrid sterility. This genetic architecture in which ‘speciation genes’ are clustered in the genome can facilitate two controversial models of speciation, namely divergence in the face of gene flow and hybrid speciation.  相似文献   

9.
福建地区小叶买麻藤遗传多样性ISSR分析   总被引:1,自引:1,他引:0  
采用13条ISSR引物对福建地区小叶买麻藤11个种群共211个样本进行了种群遗传多样性检测。结果表明:(1)小叶买麻藤在物种水平上遗传多样性较高而在种群水平上较低,揭示该物种具有较强的生存、适应、发展潜力,但其种群遗传多样性已经受到生境片段化及人为活动的影响;(2)小叶买麻藤的遗传分化在裸子植物中处于中等水平,选择和基因流对种群遗传分化的作用大于遗传漂变的作用;(3)小叶买麻藤种群退化主要受人类活动影响,影响的时间较短,尚未表现出种群遗传结构的改变。  相似文献   

10.
Continental islands offer an excellent opportunity to investigate adaptive processes and to time microevolutionary changes that precede macroevolutionary events. We performed a population genetic study of the fire salamander (Salamandra salamandra), a species that displays unique intraspecific diversity of reproductive strategies, to address the microevolutionary processes leading to phenotypic and genetic differentiation of island, coastal and interior populations. We used eight microsatellite markers to estimate genetic diversity, population structure and demographic parameters in viviparous insular populations and ovoviviparous coastal and interior populations. Our results show considerable genetic differentiation (F(ST) range: 0.06-0.27), and no clear signs of gene flow among populations, except between the large and admixed interior populations. We find no support for island colonization by rafting or intentional/accidental anthropogenic introductions, indicating that rising sea levels were responsible for isolation of the island populations approximately 9000 years ago. Our study provides evidence of rapid genetic differentiation between island and coastal populations, and rapid evolution of viviparity driven by climatic selective pressures on island populations, geographic isolation with genetic drift, or a combination of these factors. Studies of these viviparous island populations in early stages of divergence help us better understand the microevolutionary processes involved in rapid phenotypic shifts.  相似文献   

11.
The evolution of mimicry in similarly defended prey is well described by the Müllerian mimicry theory, which predicts the convergence of warning patterns in order to gain the most protection from predators. However, despite this prediction, we can find great diversity of color patterns among Müllerian mimics such as Heliconius butterflies in the neotropics. Furthermore, some species have evolved the ability to maintain multiple distinct warning patterns in single populations, a phenomenon known as polymorphic mimicry. The adaptive benefit of these polymorphisms is questionable since variation from the most common warning patterns is expected to be disadvantageous as novel signals are punished by predators naive to them. In this study, we use artificial butterfly models throughout Central and South America to characterize the selective pressures maintaining polymorphic mimicry in Heliconius doris. Our results highlight the complexity of positive frequency‐dependent selection, the principal selective pressure driving convergence among Müllerian mimics, and its impacts on interspecific variation of mimetic warning coloration. We further show how this selection regime can both limit and facilitate the diversification of mimetic traits.  相似文献   

12.
Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.  相似文献   

13.
Aims The dispersal of pollen and seeds is spatially restricted and may vary among plant populations because of varying biotic interactions, population histories or abiotic conditions. Because gene dispersal is spatially restricted, it will eventually result in the development of spatial genetic structure (SGS), which in turn can allow insights into gene dispersal processes. Here, we assessed the effect of habitat characteristics like population density and community structure on small-scale SGS and estimate historical gene dispersal at different spatial scales.Methods In a set of 12 populations of the subtropical understory shrub Ardisia crenata, we assessed genetic variation at 7 microsatellite loci within and among populations. We investigated small-scale genetic structure with spatial genetic autocorrelation statistics and heterogeneity tests and estimated gene dispersal distances based on population differentiation and on within-population SGS. SGS was related to habitat characteristics by multiple regression.Important findings The populations showed high genetic diversity (H e = 0.64) within populations and rather strong genetic differentiation (F ′ ST = 0.208) among populations, following an isolation-by-distance pattern, which suggests that populations are in gene flow–drift equilibrium. Significant SGS was present within populations (mean Sp = 0.027). Population density and species diversity had a joint effect on SGS with low population density and high species diversity leading to stronger small-scale SGS. Estimates of historical gene dispersal from between-population differentiation and from within-population SGS resulted in similar values between 4.8 and 22.9 m. The results indicate that local-ranged pollen dispersal and inefficient long-distance seed dispersal, both affected by population density and species diversity, contributed to the genetic population structure of the species. We suggest that SGS in shrubs is more similar to that of herbs than to trees and that in communities with high species diversity gene flow is more restricted than at low species diversity. This may represent a process that retards the development of a positive species diversity–genetic diversity relationship.  相似文献   

14.
In cyclic populations, high genetic diversity is currently reported despite the periodic low numbers experienced by the populations during the low phases. Here, we report spatio-temporal monitoring at a very fine scale of cyclic populations of the fossorial water vole (Arvicola terrestris) during the increasing density phase. This phase marks the transition from a patchy structure (demes) during low density to a continuous population in high density. We found that the genetic diversity was effectively high but also that it displayed a local increase within demes over the increasing phase. The genetic diversity remained relatively constant when considering all demes together. The increase in vole abundance was also correlated with a decrease of genetic differentiation among demes. Such results suggest that at the end of the low phase, demes are affected by genetic drift as the result of being small and geographically isolated. This leads to a loss of local genetic diversity and a spatial differentiation among demes. This situation is counterbalanced during the increasing phase by the spatial expansion of demes and the increase of the effective migration among differentiated demes. We provide evidences that in cyclic populations of the fossorial water voles, the relative influence of drift operating during low density populations and migration occurring principally while population size increases interacts closely to maintain high genetic diversity.  相似文献   

15.
Contrasting hypotheses exist about the relationship between plant species diversity and genetic diversity. However, experimental data of species diversity effects on genetic differentiation among populations are lacking. To address this, Lolium perenne was sown with an equal number of seeds in 78 experimental grasslands (Jena Experiment) varying in species richness (1, 2, 4, 8 to 16) and functional group richness and composition (1-4; grasses, legumes, small herbs, tall herbs). Population sizes were determined 4years after sowing, and single-nucleotide polymorphism (SNP) DNA markers based on bulk samples of up to 100 individuals per population were applied. Genetic distances between the field populations and the initially sown seed population increased with sown species richness. The degree of genetic differentiation from the original seed population was largely explained by actual population sizes, which suggests that genetic drift was the main driver of differentiation. Weak relationships among relative allele frequencies and species diversity or actual population sizes, and a positive correlation between actual population sizes and expected heterozygosity also supported the role of genetic drift. Functional composition had additional effects on genetic differentiation of L. perenne populations, indicating a selection because of genotype-specific interactions with other species. Our study supports that genetic diversity is likely to be lower in plant communities with a higher number of interspecific competitors. Negative effects of species richness on population sizes may increase the probability of genetic drift, and selection because of genotype-specific interactions depending on species and genotypic community composition may modulate this relationship.  相似文献   

16.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex.  相似文献   

17.
Omphalogramma souliei Franch. Is an endangered perennial herb only distributed in alpine areas of SW China. ISSR markers were applied to determine the genetic variation and genetic structure of 60 individuals of three populations of O. Souliei in NW Yunnan, China. The genetic diversity at the species level is low with P= 42.5% (percentage of polymorphic bands) and Hsp=0.1762 (total genetic diversity). However, a high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: Gst=0.6038; AMOVA analysis: Fst=0.6797). Low level of genetic diversity within populations and significant genetic differentiation among populations might be due to the mixed mating system in which xenog-amy predominated and autogamy played an assistant role in O. Souliei. The genetic drift due to small population size and limited current gene flow also resulted in significant genetic differentiation. The assessment of genetic variation and differentiation of the endangered species provides important information for conservation on a genetic basis. Conservation strategies for this rare endemic species are proposed.  相似文献   

18.
Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range‐margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range‐margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500‐year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within‐population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (FST and Jost's Dest) and diversity within populations (FIS) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century.  相似文献   

19.
Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that may result in populations showing different selection responses when faced with environmental change.  相似文献   

20.
Landscape structure, which can be manipulated in agricultural landscapes through crop rotation and modification of field edge habitats, can have important effects on connectivity among local populations of insects. Though crop rotation is known to influence the abundance of Colorado potato beetle (CPB; Leptinotarsa decemlineata Say) in potato (Solanum tuberosum L.) fields each year, whether crop rotation and intervening edge habitat also affect genetic variation among populations is unknown. We investigated the role of landscape configuration and composition in shaping patterns of genetic variation in CPB populations in the Columbia Basin of Oregon and Washington, and the Central Sands of Wisconsin, USA. We compared landscape structure and its potential suitability for dispersal, tested for effects of specific land cover types on genetic differentiation among CPB populations, and examined the relationship between crop rotation distances and genetic diversity. We found higher genetic differentiation between populations separated by low potato land cover, and lower genetic diversity in populations occupying areas with greater crop rotation distances. Importantly, these relationships were only observed in the Columbia Basin, and no other land cover types influenced CPB genetic variation. The lack of signal in Wisconsin may arise as a consequence of greater effective population size and less pronounced genetic drift. Our results suggest that the degree to which host plant land cover connectivity affects CPB genetic variation depends on population size and that power to detect landscape effects on genetic differentiation might be reduced in agricultural insect pest systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号