首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Hsp70 superfamily is a ubiquitous chaperone class that includes conventional and large Hsp70s. BiP is the only conventional Hsp70 in the endoplasmic reticulum (ER) whose functions include: assisting protein folding, targeting misfolded proteins for degradation, and regulating the transducers of the unfolded protein response. The ER also possesses a single large Hsp70, the glucose-regulated protein of 170 kDa (Grp170). Like BiP it is an essential protein, but its cellular functions are not well understood. Here we show that Grp170 can bind directly to a variety of incompletely folded protein substrates in the ER, and as expected for a bona fide chaperone, it does not interact with folded secretory proteins. Our data demonstrate that Grp170 and BiP associate with similar molecular forms of two substrate proteins, but while BiP is released from unfolded substrates in the presence of ATP, Grp170 remains bound. In comparison to conventional Hsp70s, the large Hsp70s possess two unique structural features: an extended C-terminal α-helical domain and an unstructured loop in the putative substrate binding domain with an unknown function. We find that in the absence of the α-helical domain the interaction of Grp170 with substrates is reduced. In striking contrast, deletion of the unstructured loop results in increased binding to substrates, suggesting the presence of unique intramolecular mechanisms of control for the chaperone functions of large Hsp70s.  相似文献   

2.
Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana   总被引:3,自引:0,他引:3       下载免费PDF全文
The Arabidopsis genome contains at least 18 genes encoding members of the 70-kilodalton heat shock protein (Hsp70) family, 14 in the DnaK subfamily and 4 in the Hsp110/SSE subfamily. While the Hsp70s are highly conserved, a phylogenetic analysis including all members of this family in Arabidopsis and in yeast indicates the homology of Hsp70s in the subgroups, such as those predicted to localize in the same subcellular compartment and those similar to the mammalian Hsp110 and Grp170. Gene structure and genome organization suggest duplication in the origin of some genes. The Arabidopsis hsp70s exhibit distinct expression profiles; representative genes of the subgroups are expressed at relatively high levels during specific developmental stages and under thermal stress.  相似文献   

3.
4.
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.  相似文献   

5.
Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these "atypical" Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.  相似文献   

6.
Traditionally, the canine pancreatic endoplasmic reticulum (ER) has been the workhorse for cell-free studies on protein transport into the mammalian ER. These studies have revealed multiple roles for the major ER-luminal heat shock protein (Hsp) 70, IgG heavy chain-binding protein (BiP), at least one of which also involves the second ER-luminal Hsp70, glucose-regulated protein (Grp) 170. In addition, at least one of these BiP activities depends on Hsp40. Up to now, five Hsp40s and two nucleotide exchange factors, Sil1 and Grp170, have been identified in the ER of different mammalian cell types. Here we quantified the various proteins of this chaperone network in canine pancreatic rough microsomes. We also characterized the various purified proteins with respect to their affinities for BiP and their effect on the ATPase activity of BiP. The results identify Grp170 as the major nucleotide exchange factor for BiP, and the resident ER-membrane proteins ER-resident J-domain protein 1 plus ER-resident J-domain protein 2/Sec63 as prime candidates for cochaperones of BiP in protein transport in the pancreatic ER. Thus, these data represent a comprehensive analysis of the BiP chaperone network that was recently linked to two human inherited diseases, polycystic liver disease and Marinesco-Sj?gren syndrome.  相似文献   

7.
A hitchhiker's guide to the human Hsp70 family   总被引:11,自引:0,他引:11       下载免费PDF全文
The human Hsp70 family encompasses at least 11 genes which encode a group of highly related proteins. These proteins include both cognate and highly inducible members, at least some of which act as molecular chaperones. The location of cognate Hsp70s within all the major subcellular compartments is an indication of the importance of these proteins. The expression of several inducible Hsp70 genes is also an indication of the importance of these proteins in the stres response. The existence of multiple genes and protein isoforms has created confusion in the identification and naming of particular family members. We have compiled, from the literature, a list of genes and genetic loci and produced a two-dimensional protein map of the known human Hsp70 family members. This will enable researchers in the field to quickly and reliably identify human Hsp70s. We have also devised a more rational nomenclature for these genes and gene products which, subject to general acceptance, could be extended to Hsp70 families from other species.  相似文献   

8.
The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.  相似文献   

9.
Park J  Easton DP  Chen X  MacDonald IJ  Wang XY  Subjeck JR 《Biochemistry》2003,42(50):14893-14902
The 170 kDa glucose-regulated protein (grp170) is an endoplasmic reticulum resident protein that shares some sequence homology with both the hsp70 and hsp110 heat shock protein (hsp) families, yet is representative of a third and unique family of stress proteins. Despite observations indicating important roles in normal cellular functions, the in vitro chaperone properties of grp170 have not been rigorously examined. We have cloned mouse grp170 and expressed the recombinant protein in a baculovirus expression system. The function of recombinant grp170 was then assessed by determining its ability to bind to and prevent aggregation of heat-denatured luciferase. Grp170 maintains heat-denatured luciferase in a soluble state in the absence of ATP. In the presence of rabbit reticulocyte lysate, grp170 can refold and partially restore function to denatured luciferase. The chaperoning function of grp170 was also studied using domain deletion mutants, designed using the crystal structure of DnaK and the theoretical secondary structure of hsp110 as guides. Unlike hsp70 and hsp110, grp170 appears to have two domains capable of binding denatured luciferase and inhibiting its heat-induced aggregation. The two domains were identified as being similar to the classical beta-sandwich peptide binding domain and the C-terminal alpha-helical domain in hsp70 and hsp110. The ability of the C-terminal region to bind peptides is a unique feature of grp170.  相似文献   

10.
Shaner L  Sousa R  Morano KA 《Biochemistry》2006,45(50):15075-15084
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.  相似文献   

11.
12.
Hsp90 and Hsp70 are highly conserved molecular chaperones that promote the proper folding and activation of substrate proteins that are often referred to as clients. The two chaperones functionally collaborate to fold specific clients in an ATP-dependent manner. In eukaryotic cytosol, initial client folding is done by Hsp70 and its co-chaperones, followed by a direct transfer of client refolding intermediates to Hsp90 for final client processing. However, the mechanistic details of collaboration of organelle specific Hsp70 and Hsp90 are lacking. This work investigates the collaboration of the endoplasmic reticulum (ER) Hsp70 and Hsp90, BiP and Grp94 respectively, in protein remodeling using in vitro refolding assays. We show that under milder denaturation conditions, BiP collaborates with its co-chaperones to refold misfolded proteins in an ATP-dependent manner. Grp94 does not play a major role in this refolding reaction. However, under stronger denaturation conditions that favor aggregation, Grp94 works in an ATP-independent manner to bind and hold misfolded clients in a folding competent state for subsequent remodeling by the BiP system. We also show that the collaboration of Grp94 and BiP is not simply a reversal of the eukaryotic refolding mechanism since a direct interaction of Grp94 and BiP is not required for client transfer. Instead, ATP binding but not hydrolysis by Grp94 facilitates the release of the bound client, which is then picked up by the BiP system for subsequent refolding in a Grp94-independent manner.  相似文献   

13.
Hsp70s are a ubiquitous family of highly conserved proteins. Hsp70s are chaperones and have important roles in both protein folding and thermotolerance. It has been widely assumed that Hsp70 sequence evolution is governed by the strong functional constraints imposed by its crucial cellular functions. In this study of cytosolic heat-inducible Hsp70s from three spider families, we have found clear evidence of positive natural selection altering Hsp70s in desert-dwelling and heat-loving Diguetidae spiders. These spiders are a small family restricted to deserts. They display heat-tolerant behaviours not seen in their closest relatives, the Pholcidae and Plectreuridae.  相似文献   

14.
Heat shock proteins play a major role in the process of protein folding, and they have been termed molecular chaperones. Two members of the Hsp70 family, Hsc70 and Hsp70, have a high degree of sequence homology. But they differ in their expression pattern. Hsc70 is constitutively expressed, whereas Hsp70 is stress inducible. These 2 proteins are localized in the cytosol and the nucleus. In addition, they have also been observed in close proximity to cellular membranes. We have recently reported that Hsc70 is capable of interacting with a lipid bilayer forming ion-conductance channels. In the present study, we found that both Hsc70 and Hsp70 interact with lipids and can be differentiated by their characteristic induction of liposome aggregation. These proteins promote the aggregation of phosphatidylserine liposomes in a time- and protein concentration-dependent manner. Although both proteins are active in this process, the level and kinetics of aggregation are different between them. Calcium ions enhance Hsc70 and Hsp70 liposome aggregation, but the effect is more dramatic for Hsc70 than for Hsp70. Addition of adenosine triphosphate blocks liposome aggregation induced by both proteins. Adenosine diphosphate (ADP) also blocks Hsp70-mediated liposome aggregation. Micromolar concentrations of ADP enhance Hsc70-induced liposome aggregation, whereas at millimolar concentrations the nucleotide has an inhibitory effect. These results confirm those of previous studies indicating that the Hsp70 family can interact with lipids directly. It is possible that the interaction of Hsp70s with lipids may play a role in the folding of membrane proteins and the translocation of polypeptides across membranes.  相似文献   

15.
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Here, we show that Hsp105alpha and Hsp105beta bind non-native protein through the beta-sheet domain and suppress the aggregation of heat-denatured protein in the presence of ADP rather than ATP. In contrast, Hsc70/Hsp40 suppressed the aggregation of heat-denatured protein in the presence of ATP rather than ADP. Furthermore, the overexpression of Hsp105alpha but not Hsp70 in COS-7 cells rescued the inactivation of luciferase caused by ATP depletion. Thus, Hsp105/110 family proteins are suggested to function as a substitute for Hsp70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress, in which the cellular ATP level decreases markedly.  相似文献   

16.
Hsp100 family of molecular chaperones shows a unique capability to resolubilize and reactivate aggregated proteins. The Hsp100-mediated protein disaggregation is linked to the activity of other chaperones from the Hsp70 and Hsp40 families. The best-studied members of the Hsp100 family are the bacterial ClpB and Hsp104 from yeast. Hsp100 chaperones are members of a large super-family of energy-driven conformational "machines" known as AAA+ ATPases. This review describes the current mechanistic model of the chaperone-induced protein disaggregation and explains how the structural architecture of Hsp100 supports disaggregation and how the co-chaperones may participate in the Hsp100-mediated reactions.  相似文献   

17.
In this study, in vitro RNA binding by members of the mammalian 70-kDa heat shock protein (Hsp) family was examined. We show that Hsp/Hsc70 and Hsp110 proteins preferentially bound AU-rich RNA in vitro. Inhibition of RNA binding by ATP suggested the involvement of the N-terminal ATP-binding domain. By using deletion mutants of Hsp110 protein, a diverged Hsp70 family member, RNA binding was localized to the N-terminal ATP-binding domain of the molecule. The C-terminal peptide-binding domain did not bind RNA, but its engagement by a peptide substrate abrogated RNA binding by the N terminus of the protein. Interestingly, removal of the C-terminal alpha-helical structure or the alpha-loop domain unique to Hsp110 immediately downstream of the peptide-binding domain, but not both, resulted in considerably increased RNA binding as compared with the wild type protein. Finally, a 70-kDa activity was immunoprecipitated from RNA-protein complexes formed in vitro between cytoplasmic proteins of human lymphocytes and AU-rich RNA. These findings support the idea that certain heat shock proteins may act as RNA-binding entities in vivo to guide the appropriate folding of RNA substrates for subsequent regulatory processes such as mRNA degradation and/or translation.  相似文献   

18.
Hsp110 is a nucleotide-activated exchange factor for Hsp70   总被引:1,自引:0,他引:1  
Hsp110 proteins constitute a subfamily of the Hsp70 chaperones and are potent nucleotide exchange factors (NEFs) for canonical Hsp70s of the eukaryotic cytosol. Here, we show that the NEF activity of the yeast Hsp110 homologue Sse1 itself is controlled by nucleotide. Nucleotide binding results in formation of a stabilized conformation of Sse1 that is required for association with the yeast Hsp70 Ssa1. The interaction triggers release of bound ADP from Ssa1, but nucleotide persists bound to Sse1 in the complex. Surprisingly, removal of this nucleotide does not affect the integrity of the complex. Instead, rebinding of ATP to the Hsp70 prompts the dissociation of the complex. Our data demonstrate that in contrast to previously characterized NEFs for Hsp70 chaperones, the NEF activity of Sse1 requires nucleotide binding and let us propose a new model for Hsp110 function.  相似文献   

19.
20.
Molecular chaperones are highly conserved in all free-living organisms. There are many types of chaperones, and most are conveniently grouped into families. Genome sequencing has revealed that many organisms contain multiple members of both the DnaK (Hsp70) family and their partner J-domain protein (JDP) cochaperone, belonging to the DnaJ (Hsp40) family. Escherichia coli K-12 encodes three Hsp70 genes and six JDP genes. The coexistence of these chaperones in the same cytosol suggests that certain chaperone-cochaperone interactions are permitted, and that chaperone tasks and their regulation have become specialized over the course of evolution. Extensive genetic and biochemical analyses have greatly expanded knowledge of chaperone tasking in this organism. In particular, recent advances in structure determination have led to significant insights of the underlying complexities and functional elegance of the Hsp70 chaperone machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号