首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
What is the spatial and temporal nature of odor representations within primary olfactory networks at the threshold of an animal's ability to discriminate? Although this question is of central importance to olfactory neuroscience, it can only be answered in model systems where neural representations can be measured and discrimination thresholds between odors can be characterized. Here, we establish these thresholds for a panel of odors using a Pavlovian paradigm in the moth Manduca sexta. Moths were differentially conditioned to respond to one odor (CS+) but not another (CS-) using undiluted odorants to minimize salience-dependent learning effects. At 24 and 48 h postconditioning, moths were tested for the presence of a conditioned response (CR) with a blank, then the CS+ and CS- (pseudorandomly) across a 5-log step series of increasing concentration. Results identified discrimination thresholds and established that differential CRs to the CS+ and CS- increased with stimulus concentration. Next, 3 separate groups of moths were differentially conditioned at either one-log step below, at, or one log step above the identified discrimination threshold. At 24 and 48 h postconditioning, moths were tested sequentially with a blank, the concentration used for conditioning, and then undiluted odor. Conditioning at one log step below the discrimination threshold established a CR, indicating both stimulus detection and learning, but was insufficient to establish evidence of discrimination. Moths conditioned at the discrimination threshold were able to discriminate but only when stimulated with undiluted odors, indicating learning, but discrimination measures were hampered. When conditioned above the discrimination threshold, moths had no difficulty in discriminating. These results establish methods for psychophysical characterization of discrimination and indicate that differential conditioning at lowered concentrations biases threshold measures.  相似文献   

2.
The antennal lobe (AL) is the primary structure within the locust’s brain that receives information from olfactory receptor neurons (ORNs) within the antennae. Different odors activate distinct subsets of ORNs, implying that neuronal signals at the level of the antennae encode odors combinatorially. Within the AL, however, different odors produce signals with long-lasting dynamic transients carried by overlapping neural ensembles, suggesting a more complex coding scheme. In this work we use a large-scale point neuron model of the locust AL to investigate this shift in stimulus encoding and potential consequences for odor discrimination. Consistent with experiment, our model produces stimulus-sensitive, dynamically evolving populations of active AL neurons. Our model relies critically on the persistence time-scale associated with ORN input to the AL, sparse connectivity among projection neurons, and a synaptic slow inhibitory mechanism. Collectively, these architectural features can generate network odor representations of considerably higher dimension than would be generated by a direct feed-forward representation of stimulus space.  相似文献   

3.
Odor discrimination times and their dependence on stimulus similarity were evaluated to test temporal and spatial models of odor representation in mice. In a go/no-go operant conditioning paradigm, discrimination accuracy and time were determined for simple monomolecular odors and binary mixtures of odors. Mice discriminated simple odors with an accuracy exceeding 95%. Binary mixtures evoking highly overlapping spatiotemporal patterns of activity in the olfactory bulb were discriminated equally well. However, while discriminating simple odors in less than 200 ms, mice required 70-100 ms more time to discriminate highly similar binary mixtures. We conclude that odor discrimination in mice is fast and stimulus dependent. Thus, the underlying neuronal mechanisms act on a fast timescale, requiring only a brief epoch of odor-specific spatiotemporal representations to achieve rapid discrimination of dissimilar odors. The fine discrimination of highly similar stimuli, however, requires temporal integration of activity, suggesting a tradeoff between accuracy and speed.  相似文献   

4.
Through the use of proboscis-extension reflex conditioning, we demonstrate that honey bees (Apis mellifera L.) bred for hygienic behavior (a behavioral mechanism of disease resistance) are able to discriminate between odors of healthy and diseased brood at a lower stimulus level than bees from a non-hygienic line. Electroantennogram recordings confirmed that hygienic bees exhibit increased olfactory sensitivity to low concentrations of the odor of chalkbrood infected pupae (a fungal disease caused by Ascosphaera apis). Three-week-old hygienic bees were able to discriminate between the brood odors significantly better than three-week old non-hygienic bees. However, the differential performance in brood odor discrimination was primarily genetically based, not a direct result of age, experience, or the temporary behavioral state of the bee. Lower stimulus thresholds for both the olfactory and behavioral responses of hygienic bees may facilitate their ability to detect, uncap and remove diseased brood rapidly from the nest. In contrast, non-hygienic bees, possessing higher response thresholds, may not be able to detect diseased brood as easily. Our results provide an example of how physiological and behavioral differences between the hygienic and non-hygienic honey bee lines, operating at the level of the individual, could produce colony-specific behavioral phenotypes.  相似文献   

5.
Animals use odors as signals for mate, kin, and food recognition, a strategy which appears ubiquitous and successful despite the high intrinsic variability of naturally-occurring odor quantities. Stimulus generalization, or the ability to decide that two objects, though readily distinguishable, are similar enough to afford the same consequence, could help animals adjust to variation in odor signals without losing sensitivity to key inter-stimulus differences. The present study was designed to investigate whether an animal's ability to generalize learned associations to novel odors can be influenced by the nature of the associated outcome. We use a classical conditioning paradigm for studying olfactory learning in honeybees to show that honeybees conditioned on either a fixed- or variable-proportion binary odor mixture generalize learned responses to novel proportions of the same mixture even when inter-odor differences are substantial. We also show that the resulting olfactory generalization gradients depend critically on both the nature of the stimulus-reward paradigm and the intrinsic variability of the conditioned stimulus. The reward dependency we observe must be cognitive rather than perceptual in nature, and we argue that outcome-dependent generalization is necessary for maintaining sensitivity to inter-odor differences in complex olfactory scenes.  相似文献   

6.
On the basis of its primary circuit it has been postulated that the olfactory bulb (OB) is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go–no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active) filter, shaping early odor representations in behaviorally meaningful ways.  相似文献   

7.

Background

Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like “friend” and “foe” are attributed to colony odors.

Methodology/Principal Findings

Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors.

Conclusions

Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.  相似文献   

8.
This video demonstrates a technique to establish the presence of a normally functioning olfactory system in a mouse. The test helps determine whether the mouse can discriminate between non-social odors and social odors, whether the mouse habituates to a repeatedly presented odor, and whether the mouse demonstrates dishabituation when presented with a novel odor. Since many social behavior tests measure the experimental animal’s response to a familiar or novel mouse, false positives can be avoided by establishing that the animals can detect and discriminate between social odors. There are similar considerations in learning tests such as fear conditioning that use odor to create a novel environment or olfactory cues as an associative stimulus. Deficits in the olfactory system would impair the ability to distinguish between contexts and to form an association with an olfactory cue during fear conditioning. In the odor habitation/dishabituation test, the mouse is repeatedly presented with several odors. Each odor is presented three times for two minutes. The investigator records the sniffing time directed towards the odor as the measurement of olfactory responsiveness. A typical mouse shows a decrease in response to the odor over repeated presentations (habituation). The experimenter then presents a novel odor that elicits increased sniffing towards the new odor (dishabituation). After repeated presentation of the novel odor the animal again shows habituation. This protocol involves the presentation of water, two or more non-social odors, and two social odors. In addition to reducing experimental confounds, this test can provide information on the function of the olfactory systems of new knockout, knock-in, and conditional knockout mouse lines.  相似文献   

9.
Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.  相似文献   

10.
Sensory systems sample the external world actively, within the context of self-motion induced disturbances. Mammals sample olfactory cues within the context of respiratory cycles and have adapted to process olfactory information within the time frame of a single sniff cycle. In plume tracking insects, it remains unknown whether olfactory processing is adapted to wing beating, which causes similar physical effects as sniffing. To explore this we first characterized the physical properties of our odor delivery system using hotwire anemometry and photo ionization detection, which confirmed that odor stimuli were temporally structured. Electroantennograms confirmed that pulse trains were tracked physiologically. Next, we quantified odor detection in moths in a series of psychophysical experiments to determine whether pulsing odor affected acuity. Moths were first conditioned to respond to a target odorant using Pavlovian olfactory conditioning. At 24 and 48 h after conditioning, moths were tested with a dilution series of the conditioned odor. On separate days odor was presented either continuously or as 20 Hz pulse trains to simulate wing beating effects. We varied pulse train duty cycle, olfactometer outflow velocity, pulsing method, and odor. Results of these studies, established that detection was enhanced when odors were pulsed. Higher velocity and briefer pulses also enhanced detection. Post hoc analysis indicated enhanced detection was the result of a significantly lower behavioral response to blank stimuli when presented as pulse trains. Since blank responses are a measure of false positive responses, this suggests that the olfactory system makes fewer errors (i.e. is more reliable) when odors are experienced as pulse trains. We therefore postulate that the olfactory system of Manduca sexta may have evolved mechanisms to enhance odor detection during flight, where the effects of wing beating represent the norm. This system may even exploit temporal structure in a manner similar to sniffing.  相似文献   

11.
Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7) in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP), an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5-18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor) for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21), mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits.  相似文献   

12.
Many insects find resources by means of the olfactory cues of general odors after learning. To evaluate behavioral responses to the odor of a particular chemical after learning with reward or punishment quantitatively, we developed a standardized odor-training method in the German cockroach, Blattella germanica (Linnaeus), an important urban pest species. A classical olfactory conditioning procedure for a preference test was modified to become applicable to a single odor, by which a (?)-menthol or vanillin odor was independently associated with sucrose (reward) or sodium chloride solution (punishment). The strength of the association with the odor was evaluated with the increase or decrease in visit frequencies to the odor source after olfactory conditioning. The frequency increased after (?)-menthol was presented with a reward, while it did not change with the rewarded vanillin odor. With both odors, the frequency decreased significantly after training with a punishment. These results indicate that cockroaches learn a single compound odor presented as a conditioned stimulus, although the association of the odor with a reward or punishment depends on the chemical. This olfactory conditioning method can not only facilitate the analysis of cockroach behavior elicited by a learned single chemical odor, but also quantify the potential attractiveness or repellency of the chemical after learning.  相似文献   

13.
A fundamental problem in studying the neural mechanisms of odor recognition and discrimination in the olfactory system lies in determining the features or “primitives” of an odor stimulus that are analyzed by glomerular circuits at the first level of processing in the brain. Several recent studies support the idea that it is not simply the molecular features of odors that contain important information, but also the intermittent pattern of their presentation to the olfactory epithelium that helps determine the behavioral response to odor. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The mushroom bodies (MBs), a paired structure in the insect brain, play a major role in storing and retrieving olfactory memories. We tested whether olfactory learning and odor processing is impaired in honeybees in which MB subunits were partially ablated. Using hydroxyurea (HU) to selectively kill proliferating cells, we created honeybees with varying degrees of MB lesions. Three-dimensional reconstructions of brains were generated to analyze the drug-induced morphological changes. These reconstructions show that, with few exceptions, only the MBs were affected by the drug, while other brain areas remained morphometrically intact. Typically, lesions affected only the MB in one hemisphere of the brain. To preclude HU-induced physiologic deficits in the antennal lobe (AL) affecting olfactory learning, we measured the responses to odors in the AL using an in vivo calcium imaging approach. The response patterns did not differ between the AL of intact versus ablated brain sides within respective specimens. We, therefore, carried out side-specific classical discriminative olfactory conditioning of the proboscis extension reflex (PER) with control bees and with HU-treated bees with or without MB ablations. All experimental groups learned equally to discriminate and respond to a rewarded (CS+) but not to an unrewarded (CS-) conditioned stimulus during acquisition and retention tests. Thus, our results indicate that partial MB lesions do not affect this form of elemental olfactory learning.  相似文献   

15.
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.  相似文献   

16.
Honeybees of different ages and reproductive castes cohabit in the hive where they are exposed to many odors that might affect associative learning. Our aim was to analyze the role of odors pre-exposed as volatiles on appetitive learning in honeybees of different ages and search for their long-term effect both under natural and laboratory conditions. By evaluating memory acquisition and retention through a differential proboscis extension response conditioning, we found that hive-exposed odors offered as a reinforced conditioned stimulus during training promoted a learning-reduced effect [latent inhibition (LI)]. On the other hand, no effect was found when the non-reinforced conditioned stimulus was pre-exposed. The LI effect varied with the odor identity. However, only slight differences were found with the age of the bees. Exposure-conditioning intervals longer than 24 h did not show an LI effect unless the odor concentration was increased or exposure was prolonged. Our results show that pre-exposed volatiles could either reduce learning performance, if this odor is later associated with food, or be irrelevant in the case that alternative scented resources circulate within the colony. The differential effects found according to the olfactory exposure characteristics could strongly influence the propagation of chemosensory information within the hive.  相似文献   

17.
Hundreds of studies have assessed variation in the degree to which people experience disgust toward substances associated with pathogens, but little is known about the mechanistic sources of this variation. The current investigation uses olfactory perception and threshold methods to test whether it is apparent at the cue-detection level, at the cue-interpretation level, or both. It further tests whether relations between disgust sensitivity and olfactory perception are specific to odors associated with pathogens. Two studies (N's = 119 and 160) of individuals sampled from a Dutch university each revealed that pathogen disgust sensitivity relates to valence perceptions of odors found in pathogen sources, but not to valence perceptions of odors not associated with pathogens, nor to intensity perceptions of odors of either type. Study 2, which also assessed olfactory thresholds via a three-alternative forced-choice staircase method, did not reveal a relation between pathogen disgust sensitivity and the ability to detect an odor associated with pathogens, nor an odor not associated with pathogens. In total, results are consistent with the idea that pathogen disgust sensitivity relates to how olfactory pathogen cues are interpreted after detection, but not necessarily to the ability to detect such cues.  相似文献   

18.

Objective

Decrease of olfactory function in Parkinson''s disease (PD) is a well-investigated fact. Studies indicate that pharmacological treatment of PD fails to restore olfactory function in PD patients. The aim of this investigation was whether patients with PD would benefit from “training” with odors in terms of an improvement of their general olfactory function. It has been hypothesized that olfactory training should produce both an improved sensitivity towards the odors used in the training process and an overall increase of olfactory function.

Methods

We recruited 70 subjects with PD and olfactory loss into this single-center, prospective, controlled non-blinded study. Thirty-five patients were assigned to the olfactory training group and 35 subjects to the control group (no training). Olfactory training was performed over a period of 12 weeks while patients exposed themselves twice daily to four odors (phenyl ethyl alcohol: rose, eucalyptol: eucalyptus, citronellal: lemon, and eugenol: cloves). Olfactory testing was performed before and after training using the “Sniffin'' Sticks” (thresholds for phenyl ethyl alcohol, tests for odor discrimination, and odor identification) in addition to threshold tests for the odors used in the training process.

Results

Compared to baseline, trained PD patients experienced a significant increase in their olfactory function, which was observed for the Sniffin'' Sticks test score and for thresholds for the odors used in the training process. Olfactory function was unchanged in PD patients who did not perform olfactory training.

Conclusion

The present results indicate that olfactory training may increase olfactory sensitivity in PD patients.  相似文献   

19.
The brain's link between perception and action involves several steps, which include stimulus transduction, neuronal coding of the stimulus, comparison to a memory template and choice of an appropriate behavioral response. All of these need time, and many studies report that the time needed to compare two stimuli correlates inversely with the perceived distance between them. We developed a behavioral assay in which we tested the time that a honeybee needs to discriminate between odors consisting of mixtures of two components, and included both very similar and very different stimuli spanning four log-concentration ranges. Bees learned to discriminate all odors, including very similar odors and the same odor at different concentrations. Even though discriminating two very similar odors appears to be a more difficult task than discriminating two very distinct substances, we found that the time needed to make a choice for or against an odor was independent of odor similarity. Our data suggest that, irrespective of the nature of the olfactory code, the bee olfactory system evaluates odor quality after a constant interval. This may ensure that odors are only assessed after the olfactory network has optimized its representation.  相似文献   

20.
The mushroom bodies (MBs), a paired structure in the insect brain, play a major role in storing and retrieving olfactory memories. We tested whether olfactory learning and odor processing is impaired in honeybees in which MB subunits were partially ablated. Using hydroxyurea (HU) to selectively kill proliferating cells, we created honeybees with varying degrees of MB lesions. Three‐dimensional reconstructions of brains were generated to analyze the drug‐induced morphological changes. These reconstructions show that, with few exceptions, only the MBs were affected by the drug, while other brain areas remained morphometrically intact. Typically, lesions affected only the MB in one hemisphere of the brain. To preclude HU‐induced physiologic deficits in the antennal lobe (AL) affecting olfactory learning, we measured the responses to odors in the AL using an in vivo calcium imaging approach. The response patterns did not differ between the AL of intact versus ablated brain sides within respective specimens. We, therefore, carried out side‐specific classical discriminative olfactory conditioning of the proboscis extension reflex (PER) with control bees and with HU‐treated bees with or without MB ablations. All experimental groups learned equally to discriminate and respond to a rewarded (CS+) but not to an unrewarded (CS?) conditioned stimulus during acquisition and retention tests. Thus, our results indicate that partial MB lesions do not affect this form of elemental olfactory learning. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 343–360, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号