首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to test whether surface mechanomyogram (MMG) recorded on the skin reflects the contractile properties of individual motor units in humans. Eight motor units in the medial gastrocnemius muscle were identified, and trains of stimulation at 5, 10, 15, and 20 Hz were delivered to each isolated motor unit. There was a significant positive correlation between the duration of MMG and twitch duration. MMG amplitude decreased with increasing stimulation frequency. Reductions in MMG amplitude were in parallel with the reductions in force fluctuations, and the rate of change in both was positively correlated across the motor units. Rate of change in MMG amplitude against force was negatively correlated to half relaxation time and twitch duration. Similar negative correlations were found between force fluctuations and contractile properties. These results provide evidence supporting a direct relation between MMG and contractile properties of individual motor units within the gastrocnemius muscle, indicating that surface MMG is dependent on the contractile properties of the activated motor units in humans.  相似文献   

2.
Changes in diaphragm motor unit EMG during fatigue   总被引:1,自引:0,他引:1  
Fatigue-related changes in the waveform and root-mean-square (rms) values of evoked motor unit electromyographic (EMG) responses were studied in the right sternocostal region of the cat diaphragm. Motor units were isolated by microdissection and stimulation of C5 ventral root filaments and then classified as fast-twitch fatigable (FF), fast-twitch fatigue intermediate (FInt), fast-twitch fatigue resistant (FR), or slow-twitch (S) based on standard physiological criteria. The evoked EMG responses of S and FR units showed very little change during the fatigue test. The evoked EMG waveform and rms values of FF and FInt units displayed variable changes during the fatigue test. When changes were observed, they typically included a prolongation of the EMG waveform, a decrease in peak amplitude, and a decrease in rms value. The changes in EMG amplitude and rms values were not correlated. In more fatigable units, the decrease in force during the fatigue test generally exceeded the decrease in EMG rms values. Changes in the evoked force and EMG responses of multiple units innervated by C5 or C6 ventral roots were also examined during the fatigue test. The decrease in diaphragm force during the fatigue test closely matched the force decline predicted by the proportionate contribution of different motor unit types. However, the observed reduction in diaphragm EMG rms values during the fatigue test exceeded that predicted based on the aggregate contribution of different motor unit types. It was concluded that changes in EMG do not reflect the extent of diaphragm fatigue.  相似文献   

3.
Our purpose was to determine the effect of eight different combinations of contraction intensity, duration, and rest on the rate of fatigue in vastus lateralis muscle. A single combination consisted of contractions at 30 or 70% maximal voluntary contraction (MVC), held for 3 or 7 s with 3- or 7-s rest intervals. Contractions were repeated until the subject could not hold the force for the requisite duration. At regular intervals during each experiment, a brief MVC, a single twitch, and the response to eight stimulation pulses at 50 Hz were elicited. The rate of fatigue was the rate of decline of MVC calculated from regression analysis. Mean rate of fatigue (n = 8) ranged from 0.3 to 25% MVC/min and was closely related (r = 0.98) to the product of the relative force and the duty cycle. Force from 50 Hz stimulation fell linearly and in parallel with MVC. Twitch force was first potentiated and then fell twice as fast as 50 Hz stimulation and MVC (p less than 0.05). Differentiated twitch contraction and relaxation rates were higher at potentiation and lower at the limit of endurance, compared with control values (p less than 0.05). The maximal electromyogram decreased 25% and the submaximal EMG increased to maximal by the end of the protocol, indicating that the entire motor unit pool had been recruited. The close relation between rate of fatigue and the force x time product probably reflects the off-setting interaction of contraction amplitude, duration, and rest interval. This occurs despite the changes in twitch characteristics and the apparent recruitment of fast fatiguing motor units.  相似文献   

4.
Ability of muscle fibers to generate force is decreased when higher frequency of stimulation of motor units immediately follows lower frequency. This phenomenon called tetanic depression was found in rat medial gastrocnemius. However, it was not clear whether tetanic depression occurred only in rat muscle or it concerns all mammals. This study was conducted on motor units of cat medial gastrocnemius. Analyses were made at three successive trains of stimulation: 30 Hz, 20 and 30 Hz and again 30 Hz (the first pattern) or 40 Hz, 25 and 40 Hz and 40 Hz (the second pattern). In all fast units force generated within the middle tetanus was lower than force generated at the same, but constant frequency of stimulation applied earlier or later. The mean tetanic depression in 30 Hz tetani amounted to 10.9% for fast fatigable (FF) and 15.9% for fast resistant (FR) motor units, whereas in 40 Hz tetani mean values were 5.6% and 7.3% for FF and FR motor units, respectively. In slow motor units tetanic depression was not observed. These results proved the existence of tetanic depression in the feline muscle and indicated that its intensity depends on the fusion of tetanus. It has been concluded, that the tetanic depression is a general property of fast motor units in mammals.  相似文献   

5.
We studied fatigue of rat diaphragm in response to repetitive brief and prolonged electrical stimulation of the phrenic nerve, at 0.2, 1-100 Hz. Low and high frequency of stimulation produced twitch and tetanic contractions in the rat diaphragm. A mean maximum twitch tension of 1.4 +/- 0.1 g was produced at 1 Hz, and a mean maximum tetanic tension of 5.6 +/- 0.3 g was obtained at 100 Hz (means +/- S.E., n = 8). Twitch and tetanic fatigue was produced at all frequencies of stimulations, but with different time scale, or duration, and with different number of stimuli delivered to the muscle. At low rates of stimulation, e.g. 10 Hz, fewer stimuli were needed to fatigue the muscle (3000 in 5 min), whereas at high rates of stimulation, e.g. 50 Hz, more stimuli were needed to fatigue the muscle (6600 in 2.2 min). The amplitude of the tetanic tensions elicited at 10 and 50 Hz, at the end of 5 or 2 min fatiguing stimulation, was 39 +/- 2.7% and 80 +/- 3.1% of their respective control tensions (2.8 +/- 0 2 g and 5.3 +/- 0.5 g, n = 8, P 0.001). It was concluded that fatigue in the rat diaphragm depended on the frequency and duration of stimulation as well as on the number of stimuli delivered to the muscle. Various mechanisms of muscle fatigue are described in the discussion to explain the observations made in the present investigation.  相似文献   

6.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension.  相似文献   

7.
The separate contributions of the recruitment level and of the firing rate of the motor units on the soundmyogram and electromyogram time domain parameters were investigated during stimulation of the motor nerve of the cat gastrocnemius muscle. Upon orderly increase in the number of active motor units at a fixed firing rate, both the peak to peak amplitude (P-Pmax) and the root mean square (RMS) of the sound myogram increased. At full recruitment the increase in firing rate from 2.5 to 50 Hz induced an exponential decline in the P-Pmax. The RMS, however, followed this trend only from 15 to 50 Hz while showing an increase from 2.5 to 10 Hz. During simultaneous changes of recruitment and firing rate, the effect of increasing the number of motor units on the P-Pmax and RMS is dampened by the increasing firing rate. The peak to peak amplitude of the EMG compound action potential increased with the number of active motor units. Moreover, its amplitude was not influenced by the firing rate. The EMG RMS, however, increases as a function of the firing rate. The results indicate that both the number and the firing rate of the active motor units contribute to the determination of the soundmyogram characteristics. Moreover, the peculiar changes of the soundmyogram time domain properties, compared to the ones of the EMG, allow one to differentiate the influence of the motor units number and firing rate on the electrical and mechanical performance of the muscle when stimulated.  相似文献   

8.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

9.
We describe an automatic algorithm for decomposing multichannel EMG signals into their component motor unit action potential (MUAP) trains, including signals from widely separated recording sites in which MUAPs exhibit appreciable interchannel offset and jitter. The algorithm has two phases. In the clustering phase, the distinct, recurring MUAPs in each channel are identified, the ones that correspond to the same motor units are determined by their temporal relationships, and multichannel templates are computed. In the identification stage, the MUAP discharges in the signal are identified using matched filtering and superimposition resolution techniques. The algorithm looks for the MUAPs with the largest single channel components first, using matches in one channel to guide the search in other channels, and using information from the other channels to confirm or refute each identification. For validation, the algorithm was used to decompose 10 real 6-to-8-channel EMG signals containing activity from up to 25 motor units. Comparison with expert manual decomposition showed that the algorithm identified more than 75% of the total 176 MUAP trains with an accuracy greater than 95%. The algorithm is fast, robust, and shows promise to be accurate enough to be a useful tool for decomposing multichannel signals. It is freely available at http://emglab.stanford.edu.  相似文献   

10.
There is currently a controversy over whether stimulation frequencies should increase or decrease to optimize force output over time. This study compared changes in thenar muscle force and M-wave amplitude during progressively increasing (20–40 Hz), decreasing (40–20 Hz) and constant (20 Hz) frequency stimulation of the median nerve continuously for 3 min. Twenty-three individuals participated in three sets of experiments. There was no significant difference in the force–time integrals between the three fatigue tasks. The rate of fatigue was not correlated to the number of stimulation pulses delivered (20 Hz: 3600, 20–40 and 40–20 Hz: 5400). All fatigue tasks caused a significant reduction in M-wave amplitude and the reduction was largest for the 20–40 Hz protocol. However, multiple linear regression analysis revealed that the M-wave amplitude could not predict the changes in force over time for the 20 Hz or 20–40 Hz protocols. Thus during sustained evoked contractions with stimulation frequencies within the physiological range, frequencies can vary significantly without changing the overall force–time integral.  相似文献   

11.
The aim of the study was to investigate amplitude and frequency content of single motor unit (MU) electromyographic (EMG) and mechanomyographic (MMG) responses. Multi-channel surface EMG and MMG signals were detected from the dominant biceps brachii muscle of 10 volunteers during isometric voluntary contractions at 20%, 50%, and 80% of the maximal voluntary contraction (MVC) force. Each contraction was performed three times in the experimental session which was repeated in three non-consecutive days. Single MU action potentials were identified from the surface EMG signals and their times of occurrence used to trigger the averaging of the MMG signal. At each contraction level, the MUs with action potentials of highest amplitude were identified. Single MU EMG and MMG amplitude and mean frequency were estimated with normalized standard error of the mean within subjects (due to repetition of the measure in different trials and experimental sessions) smaller than 15% and 7%, respectively, in all conditions. The amplitude of the action potentials of the detected MUs increased with increasing force (mean +/- SD, 244 +/- 116 microV at 20% MVC, and 1426 +/- 638 microV at 80% MVC; P < 0.001) while MU MMG amplitude increased from 20% to 50% MVC (40.5 +/- 20.9 and 150 +/- 88.4 mm/s(2), respectively; P<0.001) and did not change significantly between 50% and 80% MVC (129 +/ -82.7 mm/s(2) at 80% MVC). MU EMG mean frequency decreased with contraction level (20% MVC: 97.2 +/- 13.9 Hz; 80% MVC: 86.2 +/- 11.4 Hz; P < 0.001) while MU MMG mean frequency increased (20% MVC: 33.2 +/- 6.8 Hz; 80% MVC: 40.1 +/- 6.1 Hz; P < 0.001). EMG peak-to-peak amplitude and mean frequency of individual MUs were not correlated with the corresponding variables of MMG at any contraction level.  相似文献   

12.
The aim of this work was to demonstrate the rank order of motor unit (MU) recruitment by surface EMG based on a Laplacian detection technique and to document the MU features at their recruitment threshold. Surface EMG signals were recorded on the biceps brachii of 10 healthy subjects during linear force ramps. When achievable, the signals were decomposed into MU action potential (MUAP) trains. MU inter-pulse interval (IPI), conduction velocity (MUCV) and amplitude were estimated on the first 12 MUAPs of each detectable train in order to characterize the MU features at their firing onset. A strong correlation was found between MU recruitment threshold and IPI, MUCV, and amplitude, showing that the size principle can be demonstrated by a fully non-invasive EMG technique. However, signal decomposition was not possible on seven subjects due to the effects of the volume conductor when the skinfold thickness was too large. When requirements for an optimal detection of MUAP trains are met, surface EMG may be used to improve our understanding of MU activity.  相似文献   

13.
The main aim of the present study was to find out whether the dynamic characteristics of responses of limb extensor muscles to labyrinth stimulation were modified by the proprioceptive input elicited by appropriate displacements of the corresponding limb extremity. In cats decerebrated at precollicular or intercollicular level, the multiunit EMG activity of the medial head of the triceps brachii was recorded during roll tilt of the animal at the frequency of 0.15 Hz, +/- 10 degrees leading to selective stimulation of labyrinth receptors. This stimulation was then tested several times at regular intervals of 2 to 6 min for several hours while maintaining the ipsilateral forelimb in the horizontal extended position, i.e. with the plantar surface of the foot lying on the tilting table, or during passive flexion of the forepaw in plantar or dorsal direction. In all the experiments in which the forelimb was in the control position, the multiunit EMG responses of the triceps brachii were characterized by an increased activity during side-down tilt of the animal and a decreased activity during side up tilt. These responses were related to animal position and not to the velocity of animal displacement, thus being attributed to stimulation of macular, utricular receptors. Static displacement of limb extremities following plantar flexion of the forepaw greatly decreased the amplitude of the EMG modulation and thus the gain of the first harmonic component of the multiunit EMG responses of the ipsilateral triceps brachii to animal tilt. This reduced gain was due not only to a reduced number of motor units recruited during labyrinth stimulation, but also to a reduced modulation of firing rate of the active motor units, as shown by recording the activity of individual motor units. On the other hand, displacement of the same extremity in the opposite direction, i.e. following dorsiflexion of the forepaw, enhanced the amplitude of the EMG modulation and thus the gain of the multiunit EMG responses of the ipsilateral triceps brachii to animal tilt. This finding was mainly due to an increased recruitment of motor units during side-down tilt, although an increased modulation of the firing rate of individual motor units could not be excluded. In both instances, no changes in the phase angle to the responses were observed. The changes in response gain described above depended on the amount of passive displacement of the forepaw and persisted unmodified throughout the new maintained position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Decline in amplitude of EMG signals and in the rate of counts of intramuscularly recorded spikes during fatigue is often attributed to a progressive reduction of the neural drive only. As a rule, alterations in intracellular action potential (IAP) are not taken into account. To test correctness of the hypothesis, the effect of various discharge frequency patterns as well as changes in IAP shape and muscle fibre propagation velocity (MFPV) on the spike amplitude-frequency histogram of intramuscular interference EMG signals were simulated and analyzed. It was assumed that muscle was composed of four types of motor units (MUs): slow-twitch fatigue resistant, fast-twitch fatigue resistant, fast intermediate, and fast fatigable. MFPV and IAP duration at initial stage before fatigue as well as their changes differed for individual MU types. Fatigability of individual MU types in normal conditions as well as in the case of ischaemic or low oxygen conditions due to restricted blood flow was also taken into account. It was found that spike amplitude-frequency histogram is poorly sensitive to MU firing frequency, while it is highly sensitive to IAP profile lengthening. It is concluded that spike amplitude-frequency analysis can hardly provide a correct measure of MU rate-coding pattern during fatigue.  相似文献   

15.
PURPOSE: The purpose of the study was to demonstrate that anatomical features of individual motor units of the puborectalis muscle can be detected with non-invasive electromyography (EMG) and to evaluate differences in electrophysiological properties of the puborectalis muscles in a small group of healthy and pathologic subjects. METHODS: Multichannel EMG was recorded by means of a flexible probe applied on the gloved index finger and carrying an array of eight equally spaced (1.15 mm) electrodes. A multichannel EMG amplifier provided seven outputs corresponding to the pairs of adjacent electrodes. Tests were performed in three different positions (dorsal, left and right) over the puborectalis muscle on 20 subjects (nine healthy, seven constipated and four incontinent patients). Motor unit action potentials (MUAPs) generated at the innervation zone of a MU and propagating along the muscle fibers generated repetitive characteristic patterns on the seven output channels allowing identification of anatomical features of the motor units. RESULTS: MUAPs were observed travelling in either one or both directions with the array in dorsal position, and mainly in ventral-to-dorsal direction in either lateral position. MUAP amplitude was lower in constipated and incontinent patients with respect to healthy subjects. The conduction velocity estimated on the identified MUAPs was lower for constipated patients with respect to healthy subjects suggesting different mechanical properties of the active motor units. CONCLUSIONS: This technique allows the extraction of relevant information about the anatomical features (innervation zone position and overlapping of motor unit branches) of the puborectalis muscle and its electrophysiological properties and maybe can be applied as an novel methodology for assessing the anorectal function in patients.  相似文献   

16.
Capabilities of amplitude and spectral methods for information extraction from interference EMG signals were assessed through simulation and preliminary experiment. Muscle was composed of 4 types of motor units (MUs). Different hypotheses on changes in firing frequency of individual MUs, intracellular action potential (IAP) and muscle fibre propagation velocity (MFPV) during fatigue were analyzed. It was found that changes in amplitude characteristics of interference signals (root mean square, RMS, or integrated rectified value, IEMG) detected by intramuscular and surface electrodes differed. RMS and IEMG of surface detected interference signals could increase even under MU firing rate reduction and without MU synchronisation. IAP profile lengthening can affect amplitude characteristics more significantly than MU firing frequency. Thus, an increase of interference EMG amplitude is unreliable to reflect changes in the neural drive. The ratio between EMG amplitude and contraction response can hardly characterise the so-called 'neuromuscular efficiency'. The recently proposed spectral fatigue indices can be used for quantification of interference EMG signals. The indices are practically insensitive to MU firing frequency. IAP profile lengthening and decrease in MFPV enhanced the index value, while recruitment of fast fatigable MUs reduced it. Sensitivity of the indices was higher than that of indices traditionally used.  相似文献   

17.
To investigate the hypothesis that the rate of fatigue development is not influenced by the absolute duration of contraction (train duration) and relaxation (off-phase of duty cycle) at constant duty cycle, strips of the diaphragm from 36 male adult rats (mean +/- SD wt 152 +/- 21 g) were stimulated directly for periods of 180, 250, and 320 ms at a constant duty cycle of 50%. The frequency of stimulation was adjusted to produce 40% of maximal tetanic tension at supramaximal voltages. After 30 min of stimulation, analysis of twitch characteristics between control and experimental groups indicated a prolongation of contraction time of 9% (P less than 0.05), an increase in relaxation time of 75% (P less than 0.05), and a decrease in twitch tension by 78% (P less than 0.05). Similarly, reductions (P less than 0.05) in isometric force output at high stimulation frequency (100 Hz) of 58% and at low frequency (20 Hz) of 67% were also noted. These changes were accompanied by an approximately 60% reduction in the maximal velocity of shortening. No difference was observed for any of the mechanical measures between experimental conditions. After 30-min stimulation, decreases of between 43 and 46% were noted for ATP (P less than 0.05) and increases of between three- and fourfold noted for IMP (P less than 0.05). No changes were found for either ADP or AMP. Total adenine nucleotide concentrations declined (P less than 0.05) an average of 24%. As with the mechanical data, no differences were found between the different stimulation conditions. It is concluded that for the conditions studied, fatigue mechanisms become manifest early in the stimulation period and are only minimally altered by the duration of specific contractions provided the relaxation period is of equal duration.  相似文献   

18.
The contraction and relaxation times of the twitches and the last contractions within 32 unfused tetani of FF and 27 unfused tetani of FR motor units in the rat medial gastrocnemius muscle were studied during prolonged activity. The pattern of the MU stimulation included single pulses (to evoke twitches) and series of three trains of stimuli at 40, 50 and 60 Hz (to evoke unfused tetani), repeated 30 times. The analysis concerned changes of force and time parameters at the beginning of activity, during the potentiation and then during the fatigue. It was found that changes of force during the potentiation and the fatigue were mainly accompanied by changes in the course of relaxation. The significant prolongation of the half-relaxation time during the potentiation of either twitches or unfused tetani was revealed in both types of fast MU. The twitch contraction time did not change markedly, whereas significantly shortened in the last contractions of unfused tetani during the potentiation. These changes of time parameters correlated to the increase of the fusion degree. During the fatigue, the time parameters shortened, however, changes of the half-relaxation times were remarkably higher. The shortening of relaxation was responsible for the decrease of the fusion degree. Changes of the fusion index exceeding 0.75 during the potentiation or decreasing below this value during the fatigue, were accompanied by respective appearance or disappearance of the biphasic relaxation.  相似文献   

19.
Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies.   总被引:13,自引:0,他引:13  
Failure to maintain the required or expected force, defined as muscle fatigue, is accompanied by changes in muscle electrical activity. Although studied for a long time, reasons for EMG changes in time and frequency domain have not been clear until now. Many authors considered that theory predicted linear relation between the characteristic frequencies and muscle fibre propagation velocity (MFPV), irrespective of the fact that spectral characteristics can drop even without any changes in MFPV, or in proportion exceeding the MFPV changes. The amplitude changes seem to be more complicated and contradictory since data on increased, almost unchanged, and decreased amplitude characteristics of the EMG, M-wave or motor unit potential (MUP) during fatigue can be found in literature. Moreover, simultaneous decrease and increase in amplitude of MUP and M-wave, detected with indwelling and surface electrodes, were referred to as paradoxical. In spite of this, EMG amplitude characteristics are predominantly used when causes for fatigue are analysed. We aimed to demonstrate theoretical grounds for pitfalls and fallacies in analysis of experimental results if changes in intracellular action potential (IAP), i.e. in peripheral factors of muscle fatigue, were not taken into consideration. We based on convolution model of potentials produced by a motor unit and detected by a point or rectangular plate electrode in a homogeneous anisotropic infinite volume conductor. Presentation of MUP in the convolution form gave us a chance to consider power spectrum (PS) of MUP as a product of two terms. The first one, PS of the input signal, represented PS of the first temporal derivative of intracellular action potential (IAP). The second term, PS of the impulse response, took into account MFPV, differences in instants of activation of each fibre, MU anatomy, and MU position in the volume conductor in respect to the detecting electrode. PS presentation through product means that not only changes in MFPV could be responsible for PS shift as is usually assumed. Changes in IAP duration and IAP after-potential magnitude, affecting the first term of the product, influence the product and thus MUP PS. Moreover, the interrelations between the two spectra and thus sensitivity of spectrum to different parameters change with MU-electrode distance because the second term depends on it. Thus, we have demonstrated that theory does not predict a linear relation between the characteristic frequencies (maximum, mean and median) and MFPV. IAP duration and after-potential magnitude are among parameters affecting MUP or M-wave PS and thus, EMG PS detected by monopolar and bipolar electrodes. Usage of single fibre action potential models instead of MUP ones can result in false dependencies of frequency characteristics. The MUP amplitude characteristics are determined not only by amplitude of IAP, but also by the length of the IAP profile and source-electrode distance. Due to the IAP profile lengthening and an increase in the negative after-potential, surface detected EMG amplitude characteristics can increase even when IAP amplitude decreases considerably during fatigue. Increase in surface detected MUP or M-wave amplitude should not be attributed to a weaker attenuation of the low-frequency components with distance. Simultaneous decrease and increase in amplitude of MUP and M-wave detected with indwelling and surface electrodes are regular, not paradoxical. Corner frequency of the high pass filter should be 0.5 or 1 Hz when muscle fatigue is analyzed. The area of MUP or M-wave normalized in respect of the amplitude of the terminal phase (that is produced during extinction of the depolarized zones at the ends of the fibres) could be useful as a fatigue index. Analysing literature data on IAP changes due to Ca(2+) increasing, we hypothesised that the ability of muscle fibres to uptake Ca(2+) back into the sarcoplasmic reticulum could be the limiting site for fatigue. If this hypothesis is valid, IAP changes are not a cause of fatigue; they are due to it.  相似文献   

20.
Activity of single motor units in relation to surface electromyography (EMG) was studied in 11 subjects in attention-demanding work tasks with minimal requirement of movement. In 53 verified firing periods, single motor units fired continuously from 30 s to 10 min (duration of the experiment work task) with a stable median firing rate in the range of 8–13 Hz. When the integrated surface EMG were stable, the motor units identified as a rule were continuously active with only small modulations of firing rate corresponding to low-amplitude fluctuations in surface EMG. Marked changes in the surface EMG, either sudden or gradual, were caused by recruitment or derecruitment of motor units, and not by modulations of the motor unit firing rate. Motor unit firing periods (duration 10 s-35 s) in low-level voluntary contractions (approximately 1%–5% EMGmax) performed by the same subjects showed median firing rates (7–12 Hz) similar to the observations in attention-related activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号