首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curtobacterium pusillum contains 11-cyclohexylundecanoic acid as a major component of cellular fatty acids. A trace amount of 13-cyclohexyltridecanoic acid is also present. Fatty acids other than omega-cyclohexyl fatty acids present are 13-methyltetradecanoic, 12-methyltetradecanoic, n-pentadecanoic, 14-methylpentadecanoic, 13-methylpentadecanoic, n-hexadecanoic, 15-methylhexadecanoic, 14-methylhexadecanoic, and n-heptadecanoic acids. The fatty acid synthetase system of this bacterium was studied. Various 14C-labeled precursors were added to the growth medium and the incorporation of radioactivity into cellular fatty acids was analyzed. Sodium [14C]acetate and [14C]glucose were incorporated into almost all species of cellular fatty acids, the incorporation into 11-cyclohexylundecanoic acid being predominant. [14C]Isoleucine was incorporated into 12-methyltetradecanoic and 14-methylhexadecanoic acids: [14C]leucine into 13-methyltetradecanoic and 15-methylhexadecanoic acids; and [14C]valine into 14-methylpentadecanoic acid. [14C]-Shikimic acid was incorporated almost exclusively into omega-cyclohexyl fatty acids. The fatty acid synthetase activity of the crude enzyme preparation of C. pusillum was reconstituted on the addition of acyl carrier protein. This synthetase system required NADPH and preferentially utilized cyclohexanecarbonyl-CoA as a primer. The system was also able to use branched- and straight-chain acyl-CoAs with 4 to 6 carbon atoms effectively as primers but was unable to use acetyl-CoA. However, if acetyl acyl carrier protein was used as the priming substrate, the system produced straight-chain fatty acids. The results imply that the specificity of the initial acyl-CoA:acyl carrier protein acyltransferase dictates the structure of fatty acids synthesized and that the enzymes catalyzing the subsequent chain-elongation reactions do not have the same specificity restriction.  相似文献   

2.
The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group.  相似文献   

3.
Abstract ω-Cyclohexyl undecanoic acid, an unusual fatty acid, was found in a bacterium isolated from a soil with added zinc. The ω-cyclohexyl fatty acid accounted for 46% of total fatty acids and was the most abundant fatty acid in bacteria grown in T medium. In addition, 12-methyl tetradecanoic acid (27%) and 14-methyl hexadecanoic acid (23%) were also quantitatively major fatty acids. The bacteria grew almost normally in the Zn-enriched medium, and their ω-cyclohexyl undecanoic acid content increased with Zn concentration. The results suggest that the ω-cyclohexyl fatty acid may be related to the Zn tolerance of this strain.  相似文献   

4.
Branched-chain fatty acids of the iso and anteiso series occur in many bacteria as the major acyl constituents of membrane lipids. In addition, omega-cyclohexyl and omega-cycloheptyl fatty acids are present in several bacterial species. These two types of fatty acids are synthesized by the repeated condensation of malonyl coenzyme A with one of the branched-chain and cyclic primers by the same enzyme system. The pathway of de novo branched-chain fatty acid synthesis differs only in initial steps of synthesis from that of the common straight-chain fatty acid (palmitic acid) present in most organisms. The cell membranes composed largely of iso-, anteiso-, and omega-alicyclic acids support growth of bacteria, which inhabit normal as well as extreme environments. The occurrence of these types of fatty acids as major cellular fatty acids is an important criterion used to aid identification and classification of bacteria.  相似文献   

5.
When Mycobacterium convolutum R22 was grown on the n-alkanes C13 through C16, the predominant fatty acids were of the same chain length as the growth substrate. Cells grown on C13 through C16 n-alkanes incorporated between 15 and 85 pmol of acetate per microgram of lipid into the fatty acids, whereas acetate- or propane-grown cells incorporated 280 and 255 pmol of acetate per microgram of lipid, respectively. In vivo experiments demonstrated that hexadecane, hexadecanoic acid, and hexadecanoylcoenzyme A (CoA) all inhibited de novo fatty acid synthesis. Hexadecanoyl-CoA was the most potent inhibitor. Hexadecane and hexadecanoic acid inhibited acetyl-CoA carboxylase by up to 37 and 39%, respectively, at 1 mM. Hexadecanoyl-CoA inhibited the enzyme activity by 65% at 50 micrometer. Cells that were grown on C14 through C16 n-alkanes had about 25 times less acetyl-CoA carboxylase activity than did cells grown on acetate or propane, suggesting repressed levels of the enzyme. Hexadecane- or pentadecane-grown cells were found to have 5 to 10 times more intracellular free fatty acid than cells grown on acetate, propane, or ethane.  相似文献   

6.
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.  相似文献   

7.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

8.
Various studies on the effects of thyroid status on hepatic fatty acid synthesis have produced conflicting results. Several variables (e.g., plasma free fatty acid and glucose concentrations) are altered simultaneously by thyroid status and can affect fatty acid synthesis. To evaluate the effects of these variables, hepatic fatty acid synthesis (lipogenesis) was studied in isolated perfused livers from normal and triiodothyronine-treated rats. Livers were perfused with media containing either 5.5 or 25 mM glucose without fatty acid, or 5.5 mM glucose and 0.7 mM oleate. Rates of lipogenesis were determined by measurement of incorporation of 3H2O into fatty acids. Lipogenesis in livers from hyperthyroid animals exceeded that of controls, when perfused with 5.5 mM glucose with or without oleate. Perfusion with 25 mM glucose increased lipogenesis in both euthyroid and hyperthyroid groups to the same level, abolishing this difference between them. Perfusion with oleate reduced rates of lipogenesis by livers from euthyroid and hyperthyroid rats to a similar extent, but stimulated secretion of radioactive fatty acid in phospholipid and free fatty acid fractions. Oleate increased ketogenesis by livers from normal and triiodothyronine-treated rats, with higher rates of ketogenesis in the triiodothyronine-treated group. When oleate was omitted, ketogenesis in the presence of 5.5 mM glucose by the hyperthyroid group was similar to that of euthyroid controls, while ketogenesis was decreased in the hyperthyroid group relative to controls when perfused with 25 mM glucose. About 30% of the radioactivity incorporated into the total fatty acid of both groups was recovered in palmitate, with the remainder in longer chain saturated and unsaturated fatty acids. In both euthyroid and hyperthyroid groups, the ratio of triacylglycerol:phospholipid fatty acid radioactivity was not only less than predicted (based on synthetic rates of PL and TG) but also was decreased in perfusions with exogenous oleate compared to perfusions without oleate. In perfusions with oleate, both groups incorporated twice as much radioactivity into phospholipid as into triacylglycerol. The data suggest the following concepts: while hepatic fatty acid synthesis and oxidation are increased simultaneously in the hyperthyroid state, de novo synthesized fatty acids seem to be poorer substrates for oxidation than are exogenous fatty acids, and are preferentially incorporated into phospholipid, while exogenous fatty acids are better substrates for oxidation and esterification to triacylglycerol. The preferential utilization of de novo synthesized fatty acid for phospholipid synthesis may be an important physiologic adaptation insuring a constant source of fatty acid for membrane synthesis.  相似文献   

9.
Nocardia globerula strain 432 was able to synthesize triacylglycerols (TAG) during cultivation on 2,6,10,14-tetramethyl pentadecane (pristane) under nitrogen-limiting conditions. Within these cells, 4,8,12-trimethyl tridecanoic acid was the major fatty acid detected. Fatty acids with an odd number of carbon atoms and minor amounts of even-numbered fatty acids were also observed. Experiments carried out with acrylic acid, an inhibitor of beta-oxidation, suggested that odd-numbered fatty acids such as C15:0, C17:0 and 10-methyl C17:0 were synthesized de novo using propionyl-CoA, the beta-oxidation product, as precursor. Although N. globerula 432 incorporated mainly straight chain fatty acids into TAG, the branched fatty acid 4,8,12-trimethyl tridecanoic acid also appeared, to some extent, in the acylglycerols. The importance of TAG biosynthesis by pristane-grown cells of N. globerula strain 432 is discussed.  相似文献   

10.
1. 4-Methoxytoluquinol was secreted into the medium by surface cultures of the basidiomycete Lentinus degener Kalchbr. (approx. 100mg./l. of medium). In addition, epoxysuccinic acid (150–200mg.) and a long-chain diacetylenic alcohol (3mg.) were also secreted. Epoxysuccinic acid has previously been found in the culture medium of some Fungi Imperfecti. These metabolites were all synthesized during the early phase of growth but maximum production occurred some time later. 2. Supplementation of the medium with cycloheximide or 8-azaguanine inhibited the production of epoxysuccinic acid. 3. Sodium [1-14C]acetate and 6-methyl[14C]salicylic acid were not incorporated into 4-methoxytoluquinol, but [U-14C]tyrosine and [Me-14C]methionine were incorporated to the extent of 0·55 and 4·75% respectively (minimum values). Degradation studies established that the aromatic ring and C-methyl group were derived from the ring and β-carbon atom of tyrosine; the O-methyl group alone was formed from methionine.  相似文献   

11.
A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.  相似文献   

12.
1. The incorporation of 5mm-[U-(14)C]glucose into glyceride fatty acids by fat cells from normal rats incubated in the presence of 20munits of insulin/ml was increased by acetate, pyruvate, palmitate, NNN'N'-tetramethyl-p-phenylenediamine, phenazine methosulphate, dinitrophenol, tetrachlorotrifluoromethyl benzimidazole and oligomycin. Lactate did not stimulate glucose incorporation into fatty acids. The effects of these agents were concentration-dependent. 2. In the presence of 5mm-glucose+insulin, [U-(14)C]acetate, [U-(14)C]pyruvate and [U-(14)C]lactate were incorporated into fatty acids in a concentration-dependent manner, thereby further increasing the total rate of fatty acid synthesis. 3. NNN'N'-tetramethyl-p-phenylenediamine decreased the incorporation of [U-(14)C]pyruvate into fatty acids in normal cells and increased the incorporation of [U-(14)C]lactate into fatty acids. 4. In fact cells from 72h-starved rats the stimulatory effects of NNN'N'-tetramethyl-p-phenylenediamine upon glucose and lactate incorporation into fatty acids were totally and partially abolished respectively whereas the stimulatory effects of acetate upon glucose incorporation were retained. 5. Combinations of the optimum concentrations of the substances that stimulate glucose incorporation into fatty acids were tested and compared. The effects of acetate+NNN'N'-tetramethyl-p-phenylenediamine and acetate+palmitate upon normal cells were additive. The effects of NNN'N'-tetramethyl-p-phenylenediamine+palmitate were not additive. It was found that total fatty acid synthesis in the presence of glucose was most effectively increased by raising the concentration of pyruvate in the incubation system. 6. The significance of these results in supporting the proposal that fatty acid synthesis from glucose in adipose tissue is a ;self-limiting process' is discussed.  相似文献   

13.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

14.
Surface alkanes and fatty acids from the thalli of the lichen Xanthoria parietina, its photobiont Trebouxia sp., and its mycobiont were analysed by GC-MS. The green alga Trebouxia sp. synthesized mainly unsaturated fatty acids such as (Z,Z,Z)-9,12,15-18 : 3 (Z,Z)-9,12-18 : 2 and (Z)-9-18 : 1, and light alkanes C8-C15 (up to 83% of total n-alkanes). However, the mycobiont contained mainly saturated fatty acids such as hexadecanoic (16 : 0) and octadecanoic acid (18 : 0), and also very long-chain n-alkanes C22-C34. Dehydroabietic acid was found in both lichen and mycobiont. The occurrence of different amounts of n-alkanes and fatty acids in the photobionts and mycobionts of X. parietina was shown for the first time. Lichens collected from different locations in the Jerusalem hills contained n-alkanes ranging in concentration from 187 to 211 mg x (g dry wt)-1; n-alkane concentrations in the photobiont and mycobiont were 17-24 and 215-262 mg x (g dry wt)-1, respectively.  相似文献   

15.
The side chain of the antifungal antibiotic ansatrienin A from Streptomyces collinus contains a cyclohexanecarboxylic acid (CHC)-derived moiety. This moiety is also observed in trace amounts of omega-cyclohexyl fatty acids (typically less than 1% of total fatty acids) produced by S. collinus. Coenzyme A-activated CHC (CHC-CoA) is derived from shikimic acid through a reductive pathway involving a minimum of nine catalytic steps. Five putative CHC-CoA biosynthetic genes in the ansatrienin biosynthetic gene cluster of S. collinus have been identified. Plasmid-based heterologous expression of these five genes in Streptomyces avermitilis or Streptomyces lividans allows for production of significant amounts of omega-cyclohexyl fatty acids (as high as 49% of total fatty acids). In the absence of the plasmid these organisms are dependent on exogenously supplied CHC for omega-cyclohexyl fatty acid production. Doramectin is a commercial antiparasitic avermectin analog produced by fermenting a bkd mutant of S. avermitilis in the presence of CHC. Introduction of the S. collinus CHC-CoA biosynthetic gene cassette into this organism resulted in an engineered strain able to produce doramectin without CHC supplementation. The CHC-CoA biosynthetic gene cluster represents an important genetic tool for precursor-directed biosynthesis of doramectin and has potential for directed biosynthesis in other important polyketide-producing organisms.  相似文献   

16.
Cladosporium (Amorphotheca) resinae was grown in shake culture on glucose, n-dodecane, or n-hexadecane. Growth was most rapid on glucose, and more acid accumulated in the medium than in n-alkane-grown cultures. Neutral lipid was the major lipid fraction and triglycerides were the only extracellular neutral lipids detected. Dodecanoic (lauir) acid was the predominant fatty acid (greater than 60%) in neutral lipids from all three media, with lesser amounts of tetradecanoic, hexadecanoic, and octadecanoic acids. Extracellular phospholipids identified were phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and cardiolipin or a cardiolipin-like compound. Phospholipids from all three media contained dodecanoic acid as their principle fatty acid. Dodecanoic acid was the only extracellular free fatty acid detected. Glucose medium contained acetic, glyoxylic, and glycolic acids and an unidentified organic acid which may contribute to the lower pH in cultures after growth on glucose. In all classes of extracellular lipids the fatty acids do not correspond to the fatty acids previously determined to be associated with cellular lipids. Moreover, the fatty acids of extracellular lipids do not reflect the chain length of the n-alkane growth substrate.  相似文献   

17.
The fatty acid composition of 35 strains of stalked bacteria belonging to 17 of the hitherto described 19 species and 10 unidentified strains of the genusCaulobacter was studied. ll-Methyl-cis-octadec-11-enoic acid presumably synthesized fromcis-vaccenic acid was detected in all the strains in amounts of 0.4 – 34.7 % and was considered as a chemotaxonomic marker of the genus. During growth on a peptone-yeast medium, the caulobacters synthesized, along with the fatty acids which are typical of gram-negative bacteria, some normal and branched fatty acids with 15 and 17 carbon atoms (1–49 %). The synthesis of these acids was inhibited by glucose. The cell shape of stalked bacteria (fusiform, vibrioid or bacteroid) is not obviously associated with the contents of individual fatty acids.  相似文献   

18.
Higashi S  Murata N 《Plant physiology》1993,102(4):1275-1278
The cyanobacterium Synechocystis PCC6803 was fed heptanoic acid to study the substrate specificities of desaturases and acyltransferases in lipid synthesis. This aliphatic acid was elongated to C15, C17, and C19 fatty acids, which were incorporated into polar glycerolipids and desaturated. The double bonds were located at the [delta]6, [delta]9, [delta]12, and [omega]3 positions of the fatty acids. This suggests that the [delta]9 desaturase counts the carbon number from the carboxy terminus, whereas the so-called [delta]15 desaturase counts from the methyl terminus. The counting mechanisms of the [delta]6 and [delta]12 desaturases are not fully understood. In the distribution of fatty acids at the sn positions of the glycerol moiety, the C17, C18, and C19 fatty acids were located at the sn-1 position, whereas the C15 and C16 fatty acids were located at the sn-2 position. This suggests that glycerol-3-phosphate acyltransferase specifically transfers heptadecanoic, octadecanoic, and nonadecanoic acids, whereas 1-acylglycerol-3-phosphate acyltransferase specifically transfers pentadecanoic and hexadecanoic acids.  相似文献   

19.
Glucose and fatty acid metabolism of resting skeletal muscle were studied by perfusion of the isolated rat hind leg with a hemoglobin-free medium. Tissue integrity was demonstrated by normal ATP, ADP and creatine phosphate levels, by a sufficient oxygen supply, and by a normal appearance of perfused muscle specimens under the electron microscope. The rates of glucose and fatty acid uptake, and of lactate, alanine, glycerol and fatty acid release were constant over a perfusion period of 60 min. Insulin (1 unit/l) caused a more than threefold increase in glucose uptake, a stimulation of lactate production, and a 20% increase in the muscular glycogen levels. Fatty acids and alanine release were significantly diminished by insulin, but glycerol release did not change. The uptake of oleate by the rat hind leg was dependent on the medium concentration in a range of 0.7-1.9mM oleate, and was stimulated by insulin. Glucose uptake was not influenced by oleate, whether sodium was present or not. When the leg was perfused with [1-14C]oleate, 75% of the incorporated fatty acids were found in muscle lipids, 10% were oxidized to CO2, and 5% were recovered in bone lipids. The absolute amount of oleate oxidation was not altered by insulin. In all experiments with and without glucose in the medium, 70-80% of the 14C label incorporated into muscle lipids was found in the triglyceride fraction. In the presence of glucose, insulin significantly increased the incorporation of [1-14C]oleate into muscle triglycerides, whereas no insulin effect, either on fatty acid uptake or on triglyceride formation, could be observed when glucose was omitted from the perfusate. The present results indicate that a "glucose-fatty acid cycle" as found in rat heart muscle does not operate in resting peripheral skeletal muscle tissue. They also demonstrate that the stimulating effect of insulin on muscular fatty acid uptake and triglyceride synthesis is dependent on glucose supply. This finding can be intrepreted as a stimulation of fatty acid esterification by sn-glycerol 3-phosphate derived from an increased glucose turnover, which is in turn due to insulin.  相似文献   

20.
Various strains of coryneform bacteria, Micrococcaceae and commercial starters of Lactococcus lactis and Leuconostoc were compared for their aptitude to form S-methyl thioesters. Resting cells were incubated with methanethiol alone at pH 7 and in conjunction with a mixture of straight, branched and hydroxy short-chain fatty acids up to C6 at pH 7 and 5. Results showed that all the strains synthesized at least S-methyl thioacetate, with strains that were low and high producers in each group. This is the only thioester formed in small amount by Leuconostoc. Brevibacterium linens (six strains) and Micrococcaceae (five strains) were able to form branched-chain thioesters especially from their intracellular fatty acids at neutral pH, and straight-chain thioesters mostly from exogenous fatty acids at acid pH. Coryneform bacteria other than B. linens (four strains) and L. lactis (four starters) synthesized thioesters up to S-methyl thiobutyrate from endogenous or exogenous fatty acids but not branched-chain ones, except for one starter which formed a very little thioisovalerate. Some particular effects of pH and added fatty acids revealed differences between species or strains in their specific enzymatic systems. Received: 7 April 1997 / Received revision: 5 June 1997 / Accepted: 7 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号