首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, is known to provoke insulin-like effects on GLUT4 translocation and glucose transport, but the underlying mechanism is obscure. Presently, we found in both rat adipocytes and 3T3/L1 adipocytes that okadaic acid provoked partial insulin-like increases in glucose transport, which were inhibited by phosphatidylinositol (PI) 3-kinase inhibitors, wortmannin and LY294002, and inhibitors of atypical protein kinase C (PKC) isoforms, zeta and lambda. Moreover, in both cell types, okadaic acid provoked increases in the activity of immunoprecipitable PKC-zeta/lambda by a PI 3-kinase-dependent mechanism. In keeping with apparent PI 3-kinase dependence of stimulatory effects of okadaic acid on glucose transport and PKC-zeta/lambda activity, okadaic acid provoked insulin-like increases in membrane PI 3-kinase activity in rat adipocytes; the mechanism for PI 3-kinase activation was uncertain, however, because it was not apparent in phosphotyrosine immunoprecipitates. Of further note, okadaic acid provoked partial insulin-like increases in the translocation of hemagglutinin antigen-tagged GLUT4 to the plasma membrane in transiently transfected rat adipocytes, and these stimulatory effects on hemagglutinin antigen-tagged GLUT4 translocation were inhibited by co-expression of kinase-inactive forms of PKC-zeta and PKC-lambda but not by a double mutant (T308A, S473A), activation-resistant form of protein kinase B. Our findings suggest that, as with insulin, PI 3-kinase-dependent atypical PKCs, zeta and lambda, are required for okadaic acid-induced increases in GLUT4 translocation and glucose transport in rat adipocytes and 3T3/L1 adipocytes.  相似文献   

2.
Okadaic acid inhibits secretion from mast cells, suggesting a regulatory role for protein Ser/Thr phosphatases type I (PP1) and/or 2A (PP2A) in the secretory process. In unstimulated RBL-2H3 cells, okadaic acid pretreatment inhibited PP2A activity in both cytosol and membrane fractions, but inhibition of secretion correlated with inhibition of membrane-bound rather than cytosolic PP2A activity. Okadaic acid had very little effect on PP1 activity. Stimulation of RBL-2H3 cells by antigen led to the activity and amount of PP2A in the membrane fraction increasing nearly 2-fold. In contrast, there was little change in the activity or distribution of PP1. Importantly, the translocation of PP2A was transient, coinciding with or marginally preceding the peak rate of secretion, suggesting a link between PP2A translocation, activity, and secretion. Phorbol 12-myristate 13-acetate plus the calcium ionophore A23187 induced a slower, prolonged rate of secretion that coincided with a similarly protracted translocation of PP2A to the membrane fraction. PP2A translocation is not the only event required for secretion as translocation was also induced by phorbol 12-myristate 13-acetate, without resulting in secretion. These results indicate that increased protein dephosphorylation in the membrane fraction mediated by PP2A is required for mast cell secretion. To our knowledge, this is the first demonstration of a signal-mediated, rapid, transient translocation and activation of PP2A in membranes in any system.  相似文献   

3.
H Y Wang  E Friedman 《Life sciences》1990,47(16):1419-1425
Protein kinase C (PKC) activity and translocation in response to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA), serotonin (5-HT) and thrombin was assessed in human platelets. Stimulation with PMA and 5-HT for 10 minutes or thrombin for 1 minute elicited platelet PKC translocation from cytosol to membrane. The catecholamines, norepinephrine or epinephrine at 10 microM concentrations did not induce redistribution of platelet PKC. Serotonin (0.5-100 microM) and the specific 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10-100 microM) but not the 5-HT1A or 5-HT1B agonists, (+/-) 8-hydroxy-dipropylamino-tetralin (8-OH-DPAT) or 5-methoxy-3-3-(1,2,3,6-tetrahydro-4-pyridin) 1H-indole succinate (RU 24969) induced dose-dependent PKC translocations. Serotonin-evoked PKC translocation was blocked by selective 5-HT2 receptor antagonists, ketanserin and spiroperidol. These results suggest that, in human platelets, PMA, thrombin and 5-HT can elicit PKC translocation from cytosol to membrane. Serotonin-induced PKC translocation in platelets is mediated via 5-HT2 receptors.  相似文献   

4.
Endogenous inhibitor of protein kinases (type II inhibitor, GABA-modulin) blocks the phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) as a competitive inhibitor of substrate proteins when histone is used as a substrate. Moreover, type II inhibitor blocks the phosphorylation of endogenous membrane proteins by PKC. Stimulation of alpha 1-adrenoceptors induced rapid redistribution of PKC from cytosol to membrane fraction which lasted at least 3 h, accompanied by rapid and short-lasting translocation of type II inhibitor from membrane to cytosol fraction. The cytosol content of type II inhibitor reached maximal level 10 and 20 min and became normal again 40 min after i.p. administration of methoxamine. The above actions of methoxamine were completely blocked by pretreatment with prazosin. It seems that short-lasting redistribution of type II inhibitor from membrane to cytosol fraction allows the effective phosphorylation of membrane proteins by PKC after stimulation of alpha 1-adrenoceptors.  相似文献   

5.
We have used a specific phosphatase inhibitor, okadaic acid, to examine the role of two phosphatases, PP1 and PP2A, in the induction of NF-kappa B and the long terminal repeat of the human immunodeficiency virus type 1 (HIV-LTR). Treatment of Jurkat cells with okadaic acid induced NF-kappa B in nuclear extracts. The rate of induction by okadaic acid was delayed compared to the induction of NF-kappa B by phorbol myristate acetate (PMA). The induction of NF-kappa B by okadaic acid was enhanced by cycloheximide or phytohemagglutinin (PHA). In contrast to PMA, okadaic acid appeared to induce NF-kappa B independently of protein kinase C (PKC). That the NF-kappa B induced by okadaic acid was functional was demonstrated by the marked increase in CAT activity that occurred in Jurkat, BJA-B, and U251 cells that were transfected with HIV-LTR-CAT and treated with okadaic acid. The increase in CAT activity triggered by okadaic acid was dependent on the presence of the NF-kappa B sites in the long terminal repeat of HIV as assessed by deletion and mutation analysis. Similarly to its effect on the induction of NF-kappa B, PHA added together with okadaic acid resulted in a further increase in CAT activity. Somewhat surprisingly, the addition of PMA inhibited the increase in CAT activity in response to okadaic acid, which suggests that the activation of PKC may also induce inhibitory factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The inhibition of phorbol ester activation of phospholipase D1 (PLD1) by protein kinase C (PKC) inhibitors has been considered proof of phosphorylation-dependent activation of PLD1 by PKCalpha. We studied the effect of the PKC inhibitors Ro-31-8220 and bisindolylmaleimide I on PLD1 activation and found that they inhibited the activation by interfering with PKCalpha binding to PLD1. Further studies showed that only unphosphorylated PKCalpha could bind to and activate PLD1 and that both inhibitors induced phosphorylation of PKCalpha. The phosphorylation status of either PLD1 or PKCalpha per se did not affect PLD1 activation in vitro. Immunofluorescence studies showed that PLD1 remained in the perinuclear region after phorbol ester treatment, whereas PKCalpha translocated from cytosol to both plasma membrane and perinuclear regions. Both Ro-31-8220 and bisindolylmaleimide I blocked the translocation of PKCalpha to the perinuclear region but not to the plasma membrane. Studies with okadaic acid suggested that phosphorylation regulated the relocation of PKCalpha from the plasma membrane to the perinuclear region. It is proposed that localization and interaction of PKCalpha with PLD1 in the perinuclear region is required for PLD1 activation and that PKC inhibitors inhibit this through phosphorylation of PKCalpha, which blocks its translocation.  相似文献   

7.
Glucose depletion of erythrocytes leads to activation of Ca2+-permeable cation channels, Ca2+ entry, activation of a Ca2+-sensitive erythrocyte scramblase, and subsequent exposure of phosphatidylserine at the erythrocyte surface. Ca2+ entry into erythrocytes was previously shown to be stimulated by phorbol esters and to be inhibited by staurosporine and chelerythrine and is thus thought to be regulated by protein phosphorylation/dephosphorylation, presumably via protein kinase C (PKC) and the corresponding phosphoserine/threonine phosphatases. The present experiments explored whether PKC could contribute to effects of energy depletion on erythrocyte phosphatidylserine exposure and cell volume. Phosphatidylserine exposure was estimated from annexin binding and cell volume from forward scatter in fluorescence-activated cell sorter analysis. Removal of extracellular glucose led to depletion of cellular ATP, stimulated PKC activity, led to translocation of PKC, enhanced serine phosphorylation of membrane proteins, decreased cell volume, and increased annexin binding, the latter effect being blunted but not abolished in the presence of 1 µM staurosporine or 50 nM calphostin C. The PKC stimulator phorbol-12-myristate-13-acetate (3 µM) and the phosphatase inhibitor okadaic acid (1–10 µM) mimicked the effect of glucose depletion and similarly led to translocation of PKC and enhanced serine phosphorylation, increased annexin binding, and decreased forward scatter, the latter effects being abrogated by PKC inhibitor staurosporine (1 µM). Fluo-3 fluorescence measurements revealed that okadaic acid also enhanced erythrocyte Ca2+ activity. The present observations suggest that protein phosphorylation and dephosphorylation via PKC and the corresponding protein phosphatases contribute to phosphatidylserine exposure and cell shrinkage after energy depletion. cell volume; eryptosis; calcium; okadaic acid; staurosporine  相似文献   

8.
This paper reports on potential cellular targets of azaspiracid-1 (AZ-1), a new phycotoxin that causes diarrhoeic and neurotoxic symptoms and whose mechanism of action is unknown. In excitable neuroblastoma cells, the systems studied were membrane potential, F-actin levels and mitochondrial membrane potential. AZ-1 does not modify mitochondrial activity but decreases F-actin concentration. These results indicate that the toxin does not have an apoptotic effect but uses actin for some of its effects. Therefore, cytoskeleton seems to be an important cellular target for AZ-1 effect. AZ-1 does not induce any modification in membrane potential, which does not support for neurotoxic effects. In human lymphocytes, cAMP, cytosolic calcium and cytosolic pH (pHi) levels were also studied. AZ-1 increases cytosolic calcium and cAMP levels and does not affect pHi (alkalinization). Cytosolic calcium increase seems to be dependent on both the release of calcium from intracellular Ca(2+) pools and the influx from extracellular media through Ni(2+)-blockable channels. AZ-1-induced Ca(2+) increase is negatively modulated by protein kinase C (PKC) activation, protein phosphatases 1 and 2A (PP1 and PP2A) inhibition and cAMP increasing agents. The effect of AZ-1 in cAMP is not extracellularly Ca(2+) dependent and insensitive to okadaic acid (OA).  相似文献   

9.
As in other phagocytic cells, the NADPH-oxidase system in microglia is thought to be primarily responsible for the production of superoxide anion radicals (O2(-.), a potentially cytotoxic reactive oxygen species. The assembly of a functional NADPH-oxidase complex at the plasma membrane depends on the phosphorylation and subsequent translocation of several cytosolic subunits. Immunocytochemical and subcellular fractionation experiments performed during the present study revealed that the NADPH-oxidase subunit p67(phox) translocates from the cytosol to the plasma membrane upon stimulation. Pre-incubation of microglia in alpha-tocopherol (alphaTocH) containing medium decreased O2(-.) production in a time- and concentration-dependent manner, findings attributed to attenuated p67(phox) translocation to the plasma membrane. Moreover, alphaTocH-supplementation of the culture medium resulted in decreased microglial protein kinase C (PKC) activities, an effect that could be partially or completely reversed by the addition of protein phosphatase inhibitors (okadaic acid and calyculin A). The addition of the PKC-inhibitor staurosporine inhibited the microglial respiratory burst in a manner comparable to alphaTocH. The addition of okadaic acid or calyculin A completely restored O2(-.) production in alphaTocH-supplemented cells. The present findings suggest that alphaTocH inactivates PKC via a PP1 or PP2A-mediated pathway and, as a consequence, blocks the phosphorylation-dependent translocation of p67(phox) to the plasma membrane. As a result, O2(-.) production by the microglial NADPH-oxidase system is substantially inhibited.  相似文献   

10.
Protein kinase C translocation in intact vascular smooth muscle strips.   总被引:7,自引:0,他引:7  
Using intact muscle strips from the bovine carotid artery, the time course of translocation of protein kinase C (PKC) from the cytosol to the membrane fraction was measured in response to various agonists that induce contractile responses. PKC activity was assessed by Ca2+/phospholipid-dependent phosphorylation of histone. Exposure of the muscle strips to phorbol ester (12-deoxyphorbol 13-isobutyrate) induced a rapid and sustained translocation of PKC from the cytosol to the membrane fraction, and a slowly developing but sustained contractile response. Histamine induced a comparable initial translocation of PKC to the membrane which then decreased somewhat to a stable plateau significantly above basal values. Histamine also led to a rapid and sustained increase in tension. Angiotensin I, which caused a rapid but transient contraction, induced a rapid initial translocation of PKC to the membrane. The membrane-associated PKC then declined to a stable plateau significantly lower than that seen after a histamine-induced response, and only slightly above the basal value. Endothelin, which induced a sustained contraction, caused a sustained translocation of PKC from the cytosol to the membrane. In contrast, although exposure to 35 mM-KCl induced a rapid and sustained contraction, it caused only a transient translocation of PKC; the membrane-associated PKC returned to its basal value within 20 min. These results demonstrate that PKC in intact smooth muscle can be rapidly translocated to the membrane and remains membrane-bound during sustained phorbol ester- or agonist-induced contractions, but that such a sustained translocation of PKC does not occur during prolonged stimulation with KCl.  相似文献   

11.
Biochemical properties of neuronal protein phosphatases from Aplysia californica were characterized. Dephosphorylation of phosphorylase alpha by extracts of abdominal ganglia and clusters of sensory neurons from pleural ganglia was demonstrated. Type-1 protein phosphatase (PrP-1) was identified in these extracts by the dephosphorylation of the beta-subunit of phosphorylase kinase and its inhibition by the protein, inhibitor-2. Type-2A protein phosphatase (PrP-2A) was demonstrated by the dephosphorylation of the alpha-subunit of phosphorylase kinase, which was insensitive to inhibitor-2. As in vertebrate tissues, only four enzymes, PrP-1 (47%), PrP-2A (42%), PrP-2B (11%), and PrP-2C (less than 1%), accounted for all the cellular protein phosphatase activity dephosphorylating phosphorylase kinase. Aplysia PrP-1 and PrP-2A were potently inhibited by okadaic acid, with PrP-1 being approximately 20-fold more sensitive than PrP-2A. By comparison, purified PrP-2A from rabbit skeletal muscle was 15- to 20-fold more sensitive to okadaic acid than PrP-1 from the same source. Only PrP-1 was associated with the particulate fractions from Aplysia neurons, whereas PrP-1 and PrP-2A, -2B, and -2C were all present in the cytosol. Extraction of the particulate PrP-1 decreased its sensitivity to okadaic acid by sixfold, suggesting that cellular factor(s) affect its sensitivity to this inhibitor. In most respects, protein phosphatases from Aplysia neurons resemble their mammalian counterparts, and their biochemical characterization sets the stage for examining the role of these enzymes in neuronal plasticity, and in learning and memory.  相似文献   

12.
Arachidonate activation of the NADPH-oxidase in intact neutrophils and in a cell-free O2- generation system was compared to synergistic activation in response to arachidonate and agents that effect protein phosphorylation. In intact neutrophils, suboptimal doses of retinal which increase protein phosphorylation, or 4B-phorbol 12-myristate 13-acetate (PMA) an activator of protein kinase C, induced minimal O2- release, but primed neutrophils to release enhanced amounts of O2- in response to 2.5 microM arachidonate. In contrast to retinal or PMA, okadaic acid, a specific inhibitor of serine/threonine protein phosphatases, did not induce any release of O2-, but significantly increased the maximal rate and duration of O2- release in response to arachidonate. In the cell-free system, only arachidonate induced O2- generation. Consistent with previous findings, activation of the cell-free system was dependent of the presence of light membranes, cytosol, NADPH, Mg2+, and 82 microM arachidonate. Pretreatment of neutrophils with suboptimal doses of PMA or retinal had little effect on the arachidonate-stimulated release of O2- in cell-free preparations of these cells. However, cytosol (but not light membranes) from PMA or retinal-primed neutrophils was more effective in completing resting membrane NADPH-oxidase activity when compared to cytosol from resting cells. The addition of protein kinase C inhibitors staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine decreased the effectiveness of PMA-primed cytosol to complete the cell-free system, but had little effect on cytosol obtained from cells primed with retinal. The addition of protein phosphatase inhibitors, p-nitrophenyl phosphate or okadaic acid to neutrophil cavitates increased 3-fold the release of O2- in cell-free preparations of these cells. Okadaic acid and p-nitrophenyl phosphate also increased the effectiveness of both cytosol and light membranes to complete the cell-free system when combined with cytosol or light membranes from resting neutrophils, respectively, indicating that both fractions are affected by the inhibition of protein phosphatase activity. These data indicate that increases in protein phosphorylation alone do not lead to the activation of the NADPH-oxidase, but in addition to the requirement of an anionic amphiphile, the release of O2- from intact neutrophils or in the cell-free system is increased by stimulus activation of protein kinase C or more impressively by inhibition of protein phosphatase activity.  相似文献   

13.
Okadaic acid, an inhibitor of Type I and IIa protein phosphatases, was recently found to stimulate 2-deoxyglucose uptake in rat adipocytes (Haystead, T. A. J., Sim, A. T. R., Carling, D., Honnor, R. C., Tsukitani, Y., Cohen, P., and Hardie, D. G. (1989) Nature 337, 78-81). In the present experiments the effect of okadaic acid on the phosphorylation and subcellular distribution of the insulin-regulatable glucose transporter (IRGT) was investigated. At maximally effective concentrations, insulin and okadaic acid increased the amount of IRGT in the plasma membrane by 10- and 4-fold, respectively. Thus, the stimulation of glucose transport by okadaic acid was apparently due to an increase in the surface concentration of the IRGT. However, despite its stimulatory actions, okadaic acid partially inhibited the ability of insulin to enhance glucose transport and translocation of the transporter. When cells were incubated with okadaic acid alone or in combination with insulin, phosphorylation of the IRGT in the plasma membrane was increased by approximately 3-fold relative to the intracellular pool of transporters in control cells. Phosphorylation of the IRGT was confined to the presumed cytoplasmic domain at the COOH terminus of the protein. Glucose transporters were dephosphorylated in vitro by Type I or Type IIa protein phosphatases, indicating that inhibition of one or both of these phosphatases could account for the increased phosphorylation produced by okadaic acid. The observation that okadaic acid stimulated translocation of the IRGT implicated a serine/threonine phosphorylation event in triggering movement of the intracellular IRGT-containing vesicles (GTV) to the cell surface. Immunoadsorption of GTV from 32P-labeled adipocytes revealed that the IRGT was the major phosphoprotein in these vesicles. The phosphorylation of at least three other GTV proteins was increased by okadaic acid, and these species would appear to be candidates for regulators of GTV movement to the plasma membrane. It is unlikely that phosphorylation of the IRGT is the signal for translocation because insulin did not increase phosphorylation of the protein. Rather, the inhibitory effect of okadaic acid on insulin-stimulated translocation is consistent with the hypothesis that phosphorylation of the IRGT promotes its internalization.  相似文献   

14.
The effect of the tumor promoter okadaic acid on cell cycle progression and on vimentin expression in MPC-11 mouse plasmacytoma cells was compared with that of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Cell cycle progression of asynchronously grown MPC-11 cells was inhibited by both agents, but, in contrast to the G1 phase arrest caused by TPA, okadaic acid gave rise to G2/M phase and S phase arrest. This effect of okadaic acid was delayed significantly compared to the TPA-caused arrest. Furthermore, okadaic acid was able to induce vimentin expression to an extent comparable to the TPA response. However, vimentin expression was markedly delayed in okadaic acid-treated relative to TPA-treated cells. Another protein phosphatase inhibitor, calyculin A, also induced cell cycle changes and vimentin expression at concentrations at or above 1 × 10?9M. Based on these observations, we suggest an involvement of protein phosphatase 1 (possibly also phosphatase 2A and/or other phosphatases) in both the G2/M cell cycle block and the induction of vimentin expression in MPC-11 cells by okadaic acid. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Role of protein kinase C (PKC) in interleukin (IL) 2-induced proliferation was investigated by utilizing two murine IL 2-dependent cell lines, CT6 and CTLL-2 cell lines. CT6 cells showed a marked proliferative response to phorbol 12-myristate 13-acetate (PMA), while CTLL-2 did not. PMA induced PKC translocation from cytosol to membrane only in a PMA-responsive cell line. IL 2 failed to stimulate PKC translocation in both cell lines. H-7, a potent and specific PKC inhibitor, however, inhibited the proliferation of both cell lines induced by IL 2. Taken collectively, IL 2 may induce PKC activation without its translocation.  相似文献   

16.
Okadaic acid and microcystin-LR, both potent inhibitors of protein phosphatases (PP), blocked vesicle fusion in a cell-free system. The effect of okadaic acid was reversed by the purified catalytic subunit of PP2A, but not PP1. Inhibition was gradual, required Mg-ATP, and was reduced by protein kinase inhibitors, indicating that it was mediated via protein phosphorylation. A candidate protein kinase would be cdc2 kinase, which normally is active in mitotic extracts and has been shown to inhibit endocytic vesicle fusion (Tuomikoski, T., M.-A. Felix, M. Dorée, and J. Gruenberg. 1989. Nature (Lond.). 342:942-945). However, it would appear that cdc2 kinase is not responsible for inhibition by okadaic acid. When compared to cytosol prepared from mitotic cells, okadaic acid did not increase cdc2 kinase activity sufficiently to account for the inhibition. In addition, inhibition was maintained when cdc2 protein was depleted from cytosol.  相似文献   

17.
Activation of protein kinase C (PKC) can protect cells from apoptosis induced by various agents, including Fas ligation. To elucidate a possible interaction between Fas-mediated apoptotic signals and activation-related protective signals, we investigated the impact of Fas ligation on PKC activity. We demonstrate that engagement of Fas on human lymphoid Jurkat cells triggered apoptosis, and Fas ligation resulted in partial blockade of cellular PKC activity. The phorbol 12-myristate 13-acetate-mediated translocation of PKCtheta from the cytoplasm to the membrane was inhibited by treatment with anti-Fas antibody, whereas the translocation of PKCalpha or epsilon was not affected. In vitro kinase assay of PKCalpha or epsilon phosphotransferase activity demonstrated that Fas ligation inhibited the ability of PKCalpha to phosphorylate histone H1 as substrate but did not inhibit epsilon isozyme activity. This inhibition of PKCalpha activity mediated by Fas ligation was reversed by okadaic acid, a phosphatase inhibitor, suggesting the involvement of a member of the protein phosphatase 2A subfamily in this component of Fas signaling. Identical patterns of PKC isozyme inhibition were obtained using mouse thymoma cells overexpressing the fas gene (LF(+)). These results suggest that the selective inhibition of a potentially protective, PKC-mediated pathway by Fas activation may, to some extent, contribute to Fas-induced apoptotic signaling.  相似文献   

18.
Recent studies have suggested a role for Zn2+, distinct from that of Ca2+, in the subcellular distribution and activation of protein kinase C (PKC). Here we show that Zn2+ is required for a cellular response mediated by PKC, the rapid loss of expression of a human B cell receptor MER, detected by rosetting with mouse erythrocytes. Zn2+, in the presence of the Zn2+ ionophore pyrithione, caused rapid inhibition of MER rosetting at concentrations which induce the translocation and activation of PKC. This required cellular uptake of Zn2+ and was blocked by 1,10-phenanthroline and TPEN which chelate Zn2+ but not Ca2+. Gold, a metal with similar properties, also induced translocation of PKC and inhibition of MER. By contrast, Ca2+ ionophores A23187 and ionomycin, which induce a different pathway of translocation of PKC, had no effect on MER. Phenanthroline and TPEN also blocked the inhibition of MER induced by the PKC activators phorbol ester and sodium fluoride, suggesting that endogenous cellular Zn2+ is required. We propose that some cellular actions of PKC require a Zn(2+)-dependent event and that these may be a target for gold during chrysotherapy in rheumatoid arthritis.  相似文献   

19.
Activation of neutrophils results in morphological and functional alterations including changes in cell shape and initiation of motile behavior that depend on assembly and reorganization of the actin cytoskeleton. Phosphoproteins are thought to be key intermediates in the regulation of cytoskeletal alterations and whereas much attention has been directed at the role of protein kinases, relatively little information is available on the importance of phosphatases. To elucidate the role of protein phosphatases, we studied the effects of the phosphatase inhibitors okadaic acid and calyculin A on the actin cytoskeleton of human neutrophils. Exposure of cells to okadaic acid resulted in assembly and spatial redistribution of actin, which peaked at 25 min and returned to baseline levels by 45 min, as assessed by flow cytometric analysis of NBD-phallacidin stained cells and confocal fluorescence microscopy, respectively. These effects correlated with an increase in protein phosphorylation, determined by incorporation of 32P into cellular proteins using SDS-PAGE and autoradiography. Similar but more rapid responses were observed in electropermeabilized cells treated with okadaic acid or calyculin A. The dose dependence of these effects was compatible with a role for phosphatase type 1 as the target enzyme. These findings also suggested the presence of constitutively active protein kinases capable of effecting actin polymerization. Phosphorylation of myosin light chain (MLC) has been postulated to promote actin assembly, but myosin light chain kinase (MLCK) appeared not to be involved because: (1) the effect of okadaic acid was not inhibited by the MLCK inhibitor KT5926 and (2) in permeabilized cells suspended in medium with free calcium [Ca2+] < 10 nM (conditions under which MLCK is inactive), the effect of okadaic acid persisted. The role of phosphatases in stimulus-induced actin assembly was assessed in cells preincubated with okadaic acid for 45 min, after F-actin levels had returned to baseline. Under these conditions, okadaic acid completely abrogated actin assembly induced by phorbol myristate acetate, platelet activating factor, and leukotriene B4, whereas the effects of the chemotactic peptide fMLP and opsonized zymosan (OpZ) were unaffected. We conclude that serine and threonine phosphatases exert a tonic negative influence on actin assembly and organization. Furthermore, divergent pathways seem to mediate the response to lipidic stimuli, on one hand, and fMLP and OpZ, on the other, as evidenced by the differential susceptibility to inhibition by okadaic acid. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response   总被引:16,自引:0,他引:16  
Gehringer MM 《FEBS letters》2004,557(1-3):1-8
Microcystins, potent heptapeptide hepatotoxins produced by certain bloom-forming cyanobacteria, are strong protein phosphatase inhibitors. They covalently bind the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A), thereby influencing regulation of cellular protein phosphorylation. The paralytic shellfish poison, okadaic acid, is also a potent inhibitor of these PPs. Inhibition of PP1 and PP2A has a dualistic effect on cells exposed to okadaic acid or microcystin-LR, with both apoptosis and increased cellular proliferation being reported. This review summarises the existing data on the molecular effects of microcystin-LR inhibition of PP1 and PP2A both in vivo and in vitro, and where possible, compares this to the action of okadaic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号