首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blo t 5 is the major allergen from Blomia tropicalis mites and shows strong IgE reactivity with up to 90% of asthmatic and rhinitis patients' sera. The NMR solution structure of Blo t 5 comprises three long alpha helices, forming a coiled-coil, triple-helical bundle with a left-handed twist. TROSY-NMR experiments were used to study Blo t 5 interaction with the Fab' of a specific monoclonal antibody, mAb 4A7. The mAb epitope comprises two closely spaced surfaces, I and II, connected by a sharp turn and bearing critical residues Asn46 and Lys47 on one surface, and Lys54 and Arg57 on the other. This discontinuous epitope overlaps with the human IgE epitope(s) of Blo t 5. Epitope surface II is further predicted to undergo conformational exchange in the millisecond to microsecond range. The results presented are critical for the design of a hypoallergenic Blo t 5 for efficacious immunotherapy of allergic diseases.  相似文献   

2.
Research   总被引:1,自引:0,他引:1  
Gram-positive bacterium Streptococcus gordonii, a human oral commensal, was engineered to display a single-chain Fv (scFv) antibody fragment at the cell surface. The previously developed host-vector system allowed expression of the Guy’s 13 scFv as a fusion with the streptococcal surface protein M6. Surface expression of the 515-amino acid M6/scFv fusion protein was confirmed by Western blot analysis on cellular fractions and flow cytometric analysis. Guy’s 13 scFv was derived from the Guy’s 13 monoclonal antibody, which was raised against streptococcal antigen I/II (SA I/II), the major adhesin of the caries-producing bacterium Streptococcus mutans. Surface plasmon resonance was used to test binding of scFv-expressing S. gordonii to SA I/II. Whole cells of recombinant S. gordonii were found to specifically bind to immobilised SA I/II and binding was inhibited by fluid-phase SA I/II in a dose-dependent manner. Production of a functional scFv in S. gordonii is the first step towards the development of genetically engineered commensal bacteria that, by colonizing mucosal surfaces, may provide the host with sustained delivery of recombinant antibodies.  相似文献   

3.
Keratin filaments in simple epithelial cells are heteropolymers of keratin 8 (K8) and keratin 18 (K18), which can be stained by the monoclonal antibody (MAb) LE61. This antibody has been widely used to study keratin expression in normal and neoplastic tissues. In this study we have found that MAb LE61 does not react with individual keratin polypeptides either derived from natural sources or expressed as recombinant proteins inEscherichia coli.However, when K8 or K18 bound to nitrocellulose were incubated with complementary keratin they became reactive with this antibody. A mixture of K8 and K18 in solution also reacted strongly with the MAb LE61 in ELISA. These observations suggest that the antibody recognizes a discontinuous epitope on the keratin complex. The antibody also reacted with complexes of K8 and K18 with other keratins. To locate the epitope of this antibody we have expressed K8 and K18 fragments, deleted from the amino- and carboxyl-termini, as fusion proteins with glutathioneS-transferase. These fragments were able to form a heterotypic complex with the complementary keratin. Binding of the MAb LE61 to these complexes mapped the two halves of the epitope on K8, between residues 353 and 367, and on K18, between residues 357 and 385. The two halves of the epitope appear to be in close association in the heterotypic complex since deletions from the amino-terminus did not influence the antibody binding. The highly conserved nature of this epitope in both type I and type II keratins could explain the MAb LE61 reactivity with complexes of K8 or K18 with other keratins.  相似文献   

4.
We previously reported that the expression of rotavirus phenotypes by reassortants was affected by recipient genetic background and proposed specific interactions between the outer capsid proteins VP4 and VP7 as the basis for the phenotypic effects (D. Chen, J. W. Burns, M. K. Estes, and R. F. Ramig, Proc. Natl. Acad. Sci. USA 86:3743-3747, 1989). A neutralizing, cross-reactive VP4-specific monoclonal antibody (MAb), 2G4, was used to probe the protein-protein interactions. The VP4 specificity of 2G4 was confirmed by immunoblot analysis. MAb 2G4 reacted with both standard (SA11-C13) and variant rotavirus SA11 (SA11-4F) but did not react with bovine rotavirus B223 as determined by plaque reduction neutralization (PRN) and enzyme-linked immunosorbent assay (ELISA). When a panel of SA11-4F/B223 and SA11-Cl3/B223 reassortants in purified or crude lysate form that had been grown in the presence or absence of trypsin was analyzed with MAb 2G4 by PRN and ELISA, the results with some reassortants were unexpected. That is, MAb 2G4 reacted with VP4 of SA11 parental origin (4F or C13) when it was assembled into capsids with the homologous SA11 VP7 but failed to react with VP4 of SA11 assembled into capsids with heterologous B223 VP7. Conversely, MAb 2G4 failed to react with VP4 of B223 parental origin when it was assembled into capsids with homologous B223 VP7 but did react with B223 VP4 assembled into capsids with the heterologous SA11 VP7. Similar reactivity was observed when 2G4 was used to immunoprecipitate purified double-shelled virions. When soluble unassembled viral proteins were analyzed by ELISA, the 2G4 reactive pattern was as predicted from the parental origin of VP4. That is, 2G4 reacted with the soluble VP4 of reassortants having VP4 from SA11-Cl3 or SA11-4F and failed to react with VP4 of B223 origin, regardless of the origin of VP7. PRN and ELISA results obtained with nonglycosylated viruses revealed that the unexpected reactivity of 2G4 with virus particles was not the result of differential glycosylation of VP7 and epitope masking. These results indicate that the 2G4 epitope existed in the soluble form of VP4 encoded by SA11-Cl3 or SA11-4F but not in soluble B223 VP4. On the other hand, in assembled virions, the presentation of the 2G4 epitope on VP4 was unexpected in some reassortants and was affected by the specific interactions between VP4 and VP7 of heterologous parental origin.  相似文献   

5.
Keratin intermediate filaments are heteropolymers of type I and type II polypeptides that constitute the bulk of the epithelial cytoskeleton. We microinjected seven keratin monoclonal antibodies into human epithelial cells, and two of them, only A45-B/B3 and LP3K, caused the formation of keratin aggregates. The keratin filaments in human epithelial cells were also disrupted by a monovalent A45-B/B3 Fab fragment, suggesting that the binding of the antibody, rather than cross-linking, collapses the filaments. Immunoblotting and ELISA experiments suggested that the antibody reacted weakly with recombinant K8 but did not react with recombinant K18 at all. However, the antibody reactivity increased substantially when a mixture of the two keratin polypeptides, either recombinant or derived from MCF-7, was used. The epitopes of 15 monoclonal antibodies recognizing human K8 were characterized by their reactivity with recombinant fragments of K8. Reactivity of antibody A45-B/B3 with fragments of K8 in the presence of K18 revealed that the antibody recognizes an epitope in the rod domain of K8, between residues 313 and 332, on the amino-terminal side of the stutter in helix 2B, which is involved in heterotypic association. The data suggest that this region of K8 undergoes a conformational change following interaction with the complementary K18 either to expose the epitope or to increase its affinity for the antibody. Taken together, the data highlight the role of this epitope in heterotypic association and in filament stabilization.  相似文献   

6.
Twenty-five allospecific monoclonal antibodies (mAb), produced in the A. TH. A.BY, or B10.S (7R) anti-A.TL combinations, were shown to recognize determinants organized in four spatially distinct polymorphic regions on the same I-Ak-encoded molecule(s). These reagents were used to assess the recognition of the class II major histocompatibility complex (MHC) determinants in a series of GAT-reactive A.TL T-cell clones exhibiting various restriction specificity or alloreactivity patterns. Of the proliferative responses of 13 cloned T cells, 12 responses were found to be inhibited similarly by the same set of mAbs.A hierarchy in the blocking effects of these reagents that could be correlated with the spatial organization of their determinants was observed. (i) All the mAbs defining the epitope region I (i.e., recognizing public Ia.1- or Ia.17-like determinants, presumably expressed on the A beta subunit) and some of those identifying new public determinants in the epitope region II profoundly inhibited these T-cell responses. (ii) Intermediate blocking was observed when mAbs recognizing public determinants in the epitope region III were used. (iii) Finally, among the mAbs that identified the epitope group IV, the Ia.19-specific mAb 39.J was inhibitory, whereas mAbs directed against private Ia.2-like determinants were not. By contrast, the GAT-specific proliferative response of the T-cell clone AT-20.1, which recognized its nominal antigen in an extensively cross-reactive MHC-restricted fashion, could only be inhibited by a subset of the mAbs recognizing epitopes in groups I and II, but not by those recognizing epitopes in groups III and IV. It was also shown that the same subset of I-Ak-and I-Au-reactive mAbs displayed similar blocking effects on the proliferation of two T-cell clones exhibiting dual specificity for I-Ak- and I-Au-restricting and/or I-Ak- and I-Au-alloactivating determinants. Finally, all the cloned T-cell responses examined were found to be inhibited by rat mAbs against the LFA.1 molecule or the murine equivalent of the human OKT4 differentiation antigen. These studies suggest that class II specific mAbs can impair proliferation of cloned T-cells by a mechanism(s) other than the masking of the T-cells' restriction determinants per se.  相似文献   

7.
Molecules encoded by the major histocompatibility complex (MHC) are polymorphic integral membrane proteins adapted to the presentation of peptide fragments of foreign antigens to antigen-specific T-cells. The diversity of infectious agents to which an immune response must be mounted poses a unique problem for receptor–ligand interactions; how can proteins whose polymorphism is necessarily limited bind an array of peptides almost infinite in its complexity? Both MHC class I and class II determinants have achieved this goal by harnessing a limited number of peptide side chains to anchor the epitope in place while exploiting conserved features of peptide structure, independent of their primary sequence. While class I molecules interact predominantly with the N- and C-termini of peptides, class II determinants form an extensive hydrogen bonding network along the length of the peptide backbone. Such a strategy ensures high-affinity binding, while selectively exposing the unique features of each ligand for recognition by the T-cell receptor. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.

Background  

Common oral diseases and dental caries can be prevented effectively by passive immunization. In humans, passive immunotherapy may require the use of humanized or human antibodies to prevent adverse immune responses against murine epitopes. Therefore we generated human single chain and diabody antibody derivatives based on the binding characteristics of the murine monoclonal antibody Guy's 13. The murine form of this antibody has been used successfully to prevent Streptococcus mutans colonization and the development of dental caries in non-human primates, and to prevent bacterial colonization in human clinical trials.  相似文献   

9.
The epitope of a monoclonal antibody raised against human thrombin has been determined by hydrogen/deuterium exchange coupled to MALDI mass spectrometry. The antibody epitope was identified as the surface of thrombin that retained deuterium in the presence of the monoclonal antibody compared to control experiments in its absence. Covalent attachment of the antibody to protein G beads and efficient elution of the antigen after deuterium exchange afforded the analysis of all possible epitopes in a single MALDI mass spectrum. The epitope, which was discontinuous, consisting of two peptides close to anion-binding exosite I, was readily identified. The epitope overlapped with, but was not identical to, the thrombomodulin binding site, consistent with inhibition studies. The antibody bound specifically to human thrombin and not to murine or bovine thrombin, although these proteins share 86% identity with the human protein. Interestingly, the epitope turned out to be the more structured of two surface regions in which higher sequence variation between the three species is seen.  相似文献   

10.
A combination of epitope excision, epitope extraction, and differential chemical modification followed by mass spectrometric peptide mapping was used for the characterization of a discontinuous epitope that is recognized by the mouse anti-HIV-p24 monoclonal antibody 5E2.A3. In epitope excision, the protein is first bound to an immobilized antibody and then digested with proteolytic enzymes. In epitope extraction, the protein is first digested and subsequently allowed to react with the antibody. After epitope excision of the p24-5E2.A3 complex with endoproteinase Lys-C, a large fragment remained affinity bound corresponding to amino acids 1-158 of HIV-p24 (fragment 1-158). Further digestion, however, resulted in loss of affinity. Moreover, no affinity-bound fragments were observed after an epitope extraction experiment. These data from the epitope excision and extraction experiments suggest that the epitope is discontinuous. For the further characterization of the epitope, amino groups in the epitope-containing fragment were acetylated in both the affinity bound and free states followed by mass spectrometric analysis. Two successive acetylation reactions were performed: (1) the first used a low molar excess of acetic anhydride, and (2) the second, after separation from the antibody, a high molar excess of its hexadeuteroderivative. This isotopic labeling procedure, in combination with high resolution mass spectrometry, allowed the precise determination of relative reactivities of amino groups. In this study, no differences were observed in the ranking of the relative reactivities of five lysine residues. However, the N-terminal amino group was found to be part of the discontinuous epitope.  相似文献   

11.
12.
《The Journal of cell biology》1988,107(6):2329-2340
Cytotactin is an extracellular matrix glycoprotein with a restricted distribution during development. In electron microscopic images, it appears as a hexabrachion with six arms extending from a central core. Cytotactin binds to other extracellular matrix proteins including a chondroitin sulfate proteoglycan (CTB proteoglycan) and fibronectin. Although cytotactin binds to a variety of cells including fibroblasts and neurons, in some cases it causes cells in culture to round up and it inhibits their migration. To relate these various effects of cytotactin on cell behavior to its binding regions, we have examined its ability to support cell-substrate adhesion and have mapped its cell- binding function onto its structure. In a cell-substrate adhesion assay, fibroblasts bound to cytotactin but remained round. In contrast, they both attached and spread on fibronectin. Neither neurons nor glia bound to cytotactin in this assay. In an assay in which cell-substrate contact was initiated by centrifugation, however, neurons and glia bound well to cytotactin; this binding was blocked by specific anti- cytotactin antibodies. The results suggest that neurons and glia can bind to cytotactin-coated substrates and that these cells, like fibroblasts, possess cell surface ligands for cytotactin. After applying methods of limited proteolysis and fractionation, these assays were used to map the binding functions of cytotactin onto its structure. Fragments produced by limited proteolysis were fractionated into two major pools: one (fraction I) contained disulfide-linked oligomers of a 100-kD fragment and two minor related fragments, and the second (fraction II) contained monomeric 90- and 65-kD fragments. The 90- and 65-kD fragments in fraction II were closely related to each other and were structurally and immunologically distinct from the fragments in fraction I. Only components in fraction I were recognized by mAb M1, which binds to an epitope located in the proximal portion of the arms of the hexabrachion and by a polyclonal antibody prepared against a 75-kD CNBr fragment of intact cytotactin. A mAb (1D8) and a polyclonal antibody prepared against a 35-kD CNBr fragment of cytotactin only recognized components present in fraction II. In cell- binding experiments, fibroblasts, neurons, and glia each adhered to substrates coated with fraction II, but did not adhere to substrates coated with fraction I. Fab fragments of the antibody to the 35-kD CNBr fragment strongly inhibited the binding of cells to cytotactin, supporting the conclusion that fraction II contains a cell-binding region. In addition, Fab fragments of this antibody inhibited the binding of cytotactin to CTB pr  相似文献   

13.
Degradation of bovine nasal cartilage induced by interleukin-1 (IL-1) was used to study catabolic events in the tissue over 16 days. Culture medium was fractionated by two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE). Identification of components by peptide mass fingerprinting revealed released fragments representing the NC4 domain of the type IX collagen alpha1 chain at days 12 and 16. A novel peptide antibody against a near N-terminal epitope of the NC4 domain confirmed the finding and indicated the presence of one of the fragments already at day 9. Mass spectrometric analysis of the two most abundant fragments revealed that the smallest one contained almost the entire NC4 domain cleaved between arginine 258 and isoleucine 259 in the sequence -ETCNELPAR258-COOH NH2-ITP-. A larger fragment contained the NC4 domain and the major part of the COL3 domain with a cleavage site between glycine 400 and threonine 401 in COL3 (-RGPPGPPGPPGPSG400-COOH NH2-TIG-). The presence of multiple collagen alpha1 (IX) N-terminal sequences demonstrates that the released molecules were cleaved at sites very close to the original N terminus either prior to or due to IL-1 treatment. Matrix metalloproteinase 13 (MMP-13) is active and cleaves fibromodulin in the time interval studied. Cartilage explants treated with MMP-13 were shown to release collagen alpha1 (IX) fragments with the same sizes and with the same cleavage sites as those obtained upon IL-1 treatment. These data describe cleavage by an MMP-13 activity toward non-collagenous and triple helix domains. These potentially important degradation events precede the major loss of type II collagen.  相似文献   

14.
While one hypervariable, linear neutralizing determinant on the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein has been well characterized, little is known about the conserved, discontinuous gp120 epitopes recognized by neutralizing antibodies in infected individuals. Here, the epitope recognized by a broadly reactive neutralizing monoclonal antibody (F105) derived from an HIV-1-infected patient was characterized by examining the effects of changes in conserved gp120 amino acids on antibody reactivity. The F105 epitope was disrupted by changes in gp120 amino acids 256 and 257, 368 to 370, 421, and 470 to 484, which is consistent with the discontinuous nature of the epitope. Three of these regions are proximal to those previously shown to be important for CD4 binding, which is consistent with the ability of the F105 antibody to block gp120-CD4 interaction. Since F105 recognition was more sensitive to amino acid changes in each of the four identified gp120 regions than was envelope glycoprotein function, replication-competent mutant viruses that escaped neutralization by the F105 antibody were identified. These studies identify a conserved, functional HIV-1 gp120 epitope that is immunogenic in man and may serve as a target for therapeutic or prophylactic intervention.  相似文献   

15.
Surface protein antigen A (SpaA), also called antigen B, antigen I/II, or antigen P1, is an abundant cell envelope protein that is the major antigenic determinant of Streptococcus sobrinus and other members of the Streptococcus mutans group of cariogenic bacteria. This laboratory has previously reported the cloning and expression in Escherichia coli of a BamHI restriction fragment of S. sobrinus DNA containing most of the spaA gene (pYA726) and encoding antigen I. Regions of spaA encoding immunodeterminants of antigen I were analyzed by either deletion mapping or expressing selected restriction fragments from the trc promoter. SpaA proteins produced by mutants harboring nested deletions, constructed by BAL 31 exonuclease treatment at a unique SstI site located towards the 3' end of the gene, were examined by Western immunoblot with rabbit serum against SpaA from S. sobrinus. Only SpaA polypeptides larger than 56 kilodaltons reacted with anti-SpaA serum. Various restriction fragments of the region of spaA encoding the antigenic determinants were cloned into an expression vector. The immunoreactive properties of the polypeptides encoded by those fragments indicated that expression of the immunodominant determinant required topographically assembled residues specified by noncontiguous regions located within 0.48-kilobase PvuII-to-SstI and 1.2-kilobase SstI-to-HindIII fragments which were adjacent on the spaA map.  相似文献   

16.
Glycoprotein D (gD) is a virion envelope component of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) which plays an important role in viral infection and pathogenesis. Previously, anti-gD monoclonal antibodies (MAbs) were arranged into groups which recognize distinct type-common and type-specific sites on HSV-1 gD (gD-1) and HSV-2 gD (gD-2). Several groups recognize discontinuous epitopes which are dependent on tertiary structure. Three groups, VII, II, and V, recognize continuous epitopes present in both native and denatured gD. Previously, group II consisted of a single MAb, DL6, whose epitope was localized between amino acids 268 and 287. In the study reported here, we extended our analysis of the antigenic structure of gD, concentrating on continuous epitopes. The DL6 epitope was localized with greater precision to residues 272 to 279. Four additional MAbs including BD78 were identified, each of which recognizes an epitope within residues 264 to 275. BD78 and DL6 blocked each other in binding to gD. In addition, a mutant form of gD was constructed in which the proline at 273 was replaced by serine. This change removes a predicted beta turn in gD. Neither antibody reacted with this mutant, indicating that the BD78 and DL6 epitopes overlap and constitute an antigenic site (site II) within residues 264 to 279. A separate antigenic site (site XI) was recognized by MAb BD66 (residues 284 to 301). This site was only six amino acids downstream of site II, but was distinct as demonstrated by blocking studies. Synthetic peptides mimicking these and other regions of gD were screened with polyclonal antisera to native gD-1 or gD-2. The results indicate that sites II, V, VII, and XI, as well as the carboxy terminus, are the major continuous antigenic determinants on gD. In addition, the results show that the region from residues 264 through 369, except the transmembrane anchor, contains a series of continuous epitopes.  相似文献   

17.

Background

The circumsporozoite surface protein is the primary target of human antibodies against Plasmodium falciparum sporozoites, these antibodies are predominantly directed to the major repetitive epitope (Asn-Pro-Asn-Ala)n, (NPNA)n. In individuals immunized by the bites of irradiated Anopheles mosquitoes carrying P. falciparum sporozoites in their salivary glands, the anti-repeat response dominates and is thought by many to play a role in protective immunity.

Methods

The antibody repertoire from a protected individual immunized by the bites of irradiated P. falciparum infected Anopheles stephensi was recapitulated in a phage display library. Following affinity based selection against (NPNA)3 antibody fragments that recognized the PfCSP repeat epitope were rescued.

Results

Analysis of selected antibody fragments implied the response was restricted to a single antibody fragment consisting of VH3 and VκI families for heavy and light chain respectively with moderate affinity for the ligand.

Conclusion

The dissection of the protective antibody response against the repeat epitope revealed that the response was apparently restricted to a single VH/VL pairing (PfNPNA-1). The affinity for the ligand was in the μM range. If anti-repeat antibodies are involved in the protective immunity elicited by exposure to radiation attenuated P. falciparum sporozoites, then high circulating levels of antibodies against the repeat region may be more important than intrinsic high affinity for protection. The ability to attain and sustain high levels of anti-(NPNA)n will be one of the key determinants of efficacy for a vaccine that relies upon anti-PfCSP repeat antibodies as the primary mechanism of protective immunity against P. falciparum.  相似文献   

18.
Combined restriction with Bam H I and Sal I (or Hpa II) has revealed Bam H I fragment on a non-transcribed spacer of rRNA genes in one out of four individuals under study. Using Ag-staining and hybridization in situ, chromosome 13p+ enriched by inactive rRNA gene copies was found in the given individual. Since Sal I does not restrict methylated sequences and rRNA genes are repressed by methylation, it is concluded that methylated Banm I-restricted rRNA gene fragments of non-transcribed spacer are localized in chromosome 13p+ of the individual in question.  相似文献   

19.
A battery of monoclonal antibodies (MoAbs) against human retinol-binding protein (RBP) was produced to obtain useful probes for the study of the antigenic determinants of RBP. The 12 antibodies all reacted with human RBP by immunoblotting. Based on antibody cross-competition radioimmunoassays, four distinct and different groups of antibodies were identified: group I, 1A4 and 2F4; group II, 1G10, 5C5, 6F4, and 7G3; group III, 5H6, 6C7, 10G5, and 14E3; and group IV, 5H9 and 13A1. Information about the epitopes of RBP recognized by these MoAbs was obtained by testing the reactivity of each antibody with human, rabbit, and rat RBPs by immunoblotting. Group I and group IV antibodies reacted to a similar extent with human, rabbit, and rat RBPs. Group II antibodies reacted strongly with human and rabbit RBPs, but reacted very weakly with rat RBP. Group III antibodies reacted strongly with human RBP, but did not react with rabbit or rat RBP. Thus, the epitopes for group I and group IV antibodies appear to be regions of the RBP molecule that are conserved across the three species, whereas group III antibodies recognized only human RBP. In a preliminary study, the reactivity of each antibody with purified cyanogen bromide fragments of RBP was tested by slot immunoblotting. None of the MoAbs reacted with any of the cyanogen bromide fragments. This study shows that MoAbs specific for at least four different regions of the RBP molecule can be produced; hence, RBP contains at least four major antigenic domains.  相似文献   

20.

Background  

Chimera proteins are widely used for the analysis of the protein-protein interaction region. One of the major issues is the epitope analysis of the monoclonal antibody. In the analysis, a continuous portion of an antigen is sequentially substituted into a different sequence. This method works well for an antibody recognizing a linear epitope, but not for that recognizing a discontinuous epitope. Although the designing the chimera proteins based on the tertiary structure information is required in such situations, there is no appropriate tool so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号