首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mitosis-specific phosphorylation site in histone H3 at threonine 11 has been described for mammalian cells. This modification is restricted to the centromeric region while phosphorylation at the classical H3 sites, Ser10 and Ser28 occurs along the entire chromosomal arms. Using phosphorylation state-specific antibodies we found that phosphorylation at threonine 11 occurs also in plant cells, during mitosis as well as meiosis. However, in contrast to animal cells, ph(Thr11)H3 was distributed along the entire length of condensed chromosomes, whereas H3 phosphorylated at Ser10 and Ser28 appeared to be restricted to centromeric/pericentromeric chromatin. Phosphorylation at Thr11 started in prophase and ended in telophase, it correlated with the condensation of mitotic and meiotic chromosomes and was independent of the distribution of late replicating heterochromatin and Giemsa-banding positive regions. Interestingly, treatment of cells with the phosphatase inhibitor cantharidin revealed a high level of Thr11 phosphorylation in interphase cells, in this case particularly in pericentromeric regions. These data show that histone modifications are highly dynamic. Moreover, animal and plant organisms may have evolved individual histone codes.  相似文献   

2.
Immunolabeling using site-specific antibodies against phosphorylated histone H3 at serine 10 or serine 28 revealed in plants an almost similar temporal and spatial pattern of both post-translational modification sites at mitosis and meiosis. During the first meiotic division the entire chromosomes are highly H3 phosphorylated. In the second meiotic division, like in mitosis, the chromosomes contain high phosphorylation levels in the pericentromeric region and very little H3 phosphorylation along the arms of monocentric species. In the polycentric plant Luzula luzuloides phosphorylation at both serine positions occurs along the whole chromosomes, whereas in monocentric species, only the pericentromeric regions showed strong signals from mitotic prophase to telophase. No phosphorylated serine 10 or serine 28 was detectable on single chromatids at anaphase II resulting from equational segregation of rye B chromosome univalents during the preceding anaphase I. In addition, we found a high level of serine 28 as well as of serine 10 phosphorylation along the entire mitotic monocentric chromosomes after treatment of mitotic cells using the phosphatase inhibitor cantharidin. These observations suggest that histone H3 phosphorylation at serine 10 and 28 is an evolutionarily conserved event and both sites are likely to be involved in the same process, such as sister chromatid cohesion.  相似文献   

3.
Phosphorylation at a highly conserved serine residue (Ser-10) in the histone H3 tail is considered to be a crucial event for the onset of mitosis. This modification appears early in the G(2) phase within pericentromeric heterochromatin and spreads in an ordered fashion coincident with mitotic chromosome condensation. Mutation of Ser-10 is essential in Tetrahymena, since it results in abnormal chromosome segregation and extensive chromosome loss during mitosis and meiosis, establishing a strong link between signaling and chromosome dynamics. Although mitotic H3 phosphorylation has been long recognized, the transduction routes and the identity of the protein kinases involved have been elusive. Here we show that the expression of Aurora-A and Aurora-B, two kinases of the Aurora/AIK family, is tightly coordinated with H3 phosphorylation during the G(2)/M transition. During the G(2) phase, the Aurora-A kinase is coexpressed while the Aurora-B kinase colocalizes with phosphorylated histone H3. At prophase and metaphase, Aurora-A is highly localized in the centrosomic region and in the spindle poles while Aurora-B is present in the centromeric region concurrent with H3 phosphorylation, to then translocate by cytokinesis to the midbody region. Both Aurora-A and Aurora-B proteins physically interact with the H3 tail and efficiently phosphorylate Ser10 both in vitro and in vivo, even if Aurora-A appears to be a better H3 kinase than Aurora-B. Since Aurora-A and Aurora-B are known to be overexpressed in a variety of human cancers, our findings provide an attractive link between cell transformation, chromatin modifications and a specific kinase system.  相似文献   

4.
Post-translational modifications of core histone tails play crucial roles in chromatin structure and function. Although phosphorylation of Ser10 and Ser28 (H3S10ph and H3S28ph) of histone H3 is ubiquitous among eukaryotes, the phosphorylation mechanism during the cell cycle remains unclear. In the present study, H3S10ph and H3S28ph in tobacco BY-2 cells were observed in the pericentromeric regions during mitosis. Moreover, the Aurora kinase inhibitor Hesperadin inhibited the kinase activity of Arabidopsis thaliana Aurora kinase 3 (AtAUR3) in phosphorylating both Ser10 and Ser28 of histone H3 in vitro. Consistently, Hesperadin inhibited both H3S10ph and H3S28ph during mitosis in BY-2 cells. These results indicate that plant Aurora kinases phosphorylate not only Ser10, but also Ser28 of histone H3 in vivo. Hesperadin treatment increased the ratio of metaphase cells, while the ratio of anaphase/telophase cells decreased, although the mitotic index was not affected in Hesperadin-treated cells. These results suggest that Hesperadin induces delayed transition from metaphase to anaphase, and early exit from mitosis after chromosome segregation. In addition, micronuclei were observed frequently and lagging chromosomes, caused by the delay and failure of sister chromatid separation, were observed at anaphase and telophase in Hesperadin-treated BY-2 cells. The data obtained here suggest that plant Aurora kinases and H3S10ph/H3S28ph may have a role in chromosome segregation and metaphase/anaphase transition.  相似文献   

5.
张冰  邱礽  阚云超 《昆虫学报》2021,64(3):302-308
【目的】探究组蛋白H3Ser10磷酸化(H3Ser10ph)在家蚕Bombyx mori精母细胞减数分裂中的功能。【方法】解剖并分离家蚕4龄幼虫至蛹期精巢组织,通过丙烯酰胺凝胶包埋制备处于减数分裂不同时期的精巢组织玻片,以免疫荧光标记检测H3Ser10ph抗体在精母细胞减数分裂不同时期的定位特点。【结果】在家蚕有核精子精母细胞减数分裂过程中,组蛋白H3Ser10的磷酸化发生在粗线期染色体的特定位置,双线期H3Ser10ph信号逐渐减弱,至终变期时在染色体上完全检测不到磷酸化信号。随着细胞周期的进行,磷酸化信号又开始逐渐增强,减数第一次分裂中期时达到最高水平。当细胞进入减数第二次分裂前中期时,染色体臂上的H3Ser10ph信号消失,在靠近纺锤体微管的分裂面处有弥散的H3Ser10ph抗体的信号,减数第二次分裂末期,仅剩余非常微弱的H3Ser10ph信号残留于染色体的特定位置。在无核精子精母细胞减数分裂过程中,在中期I至末期I一直在染色体上有较均一的3Ser10ph信号,后期I时纺锤丝微管与赤道面平行。【结论】组蛋白H3Ser10磷酸化与家蚕有核精子和无核精子精母细胞减数分裂中染色质的动态变化相关。  相似文献   

6.
Somatic and meiotic chromosomes of one plant of Anthurium warocqueanum J. Moore and its selfed offspring were analyzed. The parent showed 2n = 30 + 3B in both somatic cells and pollen mother cells. The B chromosomes divided normally in somatic cells, but meiotic associations of Bs varied. Three configurations of three B chromosomes were observed at metaphase I of parent meiosis: one trivalent, one bivalent and one univalent, or three univalents. The number of B chromosomes in offspring ranged from 0 to 6, indicating their transmission from both male and female gametes. Offspring with two B chromosomes appeared in greatest frequency. It was hypothesized that both male and female gametes of the 3 B parent frequently contained one B chromosome through the normal distribution of the bivalent Bs at meiosis and the elimination of the univalent B chromosome due to lagging. Examination of pollen mother cells of offspring also revealed irregular behavior of B chromosomes. With a high number of B chromosomes, normal A chromosome bivalent formation seemed to be reduced. No phenotypic effects of B chromosomes were observed.  相似文献   

7.
Histone H3 (H3) phosphorylation at Ser(10) occurs during mitosis in eukaryotes and was recently shown to play an important role in chromosome condensation in Tetrahymena. When producing monoclonal antibodies that recognize glial fibrillary acidic protein phosphorylation at Thr(7), we obtained some monoclonal antibodies that cross-reacted with early mitotic chromosomes. They reacted with 15-kDa phosphoprotein specifically in mitotic cell lysate. With microsequencing, this phosphoprotein was proved to be H3. Mutational analysis revealed that they recognized H3 Ser(28) phosphorylation. Then we produced a monoclonal antibody, HTA28, using a phosphopeptide corresponding to phosphorylated H3 Ser(28). This antibody specifically recognized the phosphorylation of H3 Ser(28) but not that of glial fibrillary acidic protein Thr(7). Immunocytochemical studies with HTA28 revealed that Ser(28) phosphorylation occurred in chromosomes predominantly during early mitosis and coincided with the initiation of mitotic chromosome condensation. Biochemical analyses using (32)P-labeled mitotic cells also confirmed that H3 is phosphorylated at Ser(28) during early mitosis. In addition, we found that H3 is phosphorylated at Ser(28) as well as Ser(10) when premature chromosome condensation was induced in tsBN2 cells. These observations suggest that H3 phosphorylation at Ser(28), together with Ser(10), is a conserved event and is likely to be involved in mitotic chromosome condensation.  相似文献   

8.
Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique “meiosis-mitosis shift” at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.  相似文献   

9.
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.  相似文献   

10.
11.
Plant (Secale cereale, Triticum aestivum) and animal (Eyprepocnemis plorans) meiocytes were analyzed by indirect immunostaining with an antibody recognizing histone H3 phosphorylated at serine 10, to study the relationship between H3 phosphorylation and chromosome condensation at meiosis. To investigate whether the dynamics of histone H3 phosphorylation differs between chromosomes with a different mode of segregation, we included in this study mitotic cells and also meiotic cells of individuals forming bivalents plus three different types of univalents (A chromosomes, B chromosomes and X chromosome). During the first meiotic division, the H3 phosphorylation of the entire chromosomes initiates at the transition from leptotene to zygotene in rye and wheat, whereas in E. plorans it does so at diplotene. In all species analyzed H3 phosphorylation terminates toward interkinesis. The immunosignals at first meiotic division are identical in bivalents and univalents of A and B chromosomes, irrespective of their equational or reductional segregation at anaphase I. The grasshopper X chromosome, which always segregates reductionally, also shows the same pattern. Remarkable differences were found at second meiotic division between plant and animal material. In E. plorans H3 phosphorylation occurred all along the chromosomes, whereas in plants only the pericentromeric regions showed strong immunosignals from prophase II until telophase II. In addition, no immunolabeling was detectable on single chromatids resulting from equational segregation of plant A or B chromosome univalents during the preceding anaphase I. Simultaneous immunostaining with anti-tubulin and anti-phosphorylated H3 antibodies demonstrated that the kinetochores of all chromosomes interact with microtubules, even in the absence of detectable phosphorylated H3 immunosignals. The different pattern of H3 phosphorylation in plant and animal meiocytes suggests that this evolutionarily conserved post-translational chromatin modification might be involved in different roles in both types of organisms. The possibility that in plants H3 phosphorylation is related to sister chromatid cohesion is discussed.  相似文献   

12.
B chromosomes from an experimental population of the Japanese JNK strain of rye, isogenic for its Bs, have been backcrossed into twelve different inbred lines. The experiment is a way of studying the effects of the Bs against a range of different homozygous A chromosome backgrounds. This publication deals with pairing effects of both the As and the Bs, and their interactions, and with pollen mitosis. At meiosis there is a genotypic component to B effects, and they do not appear to act solely through a physical disturbance within the nucleus. In pollen the Bs are always present in more than 50% of the grains regardless of their pairing behaviour during meiosis; this result fits with a parasitic model of the activity of rye Bs.  相似文献   

13.
Wei Y  Yu L  Bowen J  Gorovsky MA  Allis CD 《Cell》1999,97(1):99-109
Phosphorylation of histone H3 at serine 10 occurs during mitosis in diverse eukaryotes and correlates closely with mitotic and meiotic chromosome condensation. To better understand the function of H3 phosphorylation in vivo, we created strains of Tetrahymena in which a mutant H3 gene (S10A) was the only gene encoding the major H3 protein. Although both micronuclei and macronuclei contain H3 in typical nucleosomal structures, defects in nuclear divisions were restricted to mitotically dividing micronuclei; macronuclei, which are amitotic, showed no defects. Strains lacking phosphorylated H3 showed abnormal chromosome segregation, resulting in extensive chromosome loss during mitosis. During meiosis, micronuclei underwent abnormal chromosome condensation and failed to faithfully transmit chromosomes. These results demonstrate that H3 serine 10 phosphorylation is causally linked to chromosome condensation and segregation in vivo and is required for proper chromosome dynamics.  相似文献   

14.
Aurora kinase B (AURKB) is a chromosomal passenger protein that is essential for a number of processes during mitosis. Its activity is regulated by association with two other passenger proteins, INCENP and Survivin, and by phosphorylation on Thr 232. In this study, we examine expression and phosphorylation on Thr-232 of AURKB during meiotic maturation of pig oocytes in correlation with histone H3 phosphorylation and chromosome condensation. We show that histone H3 phosphorylation on Ser-10, but not on Ser-28, correlates with progressive chromosome condensation during oocyte maturation; Ser-10 phosphorylation starts around the time of the breakdown of the nuclear envelope, with the maximal activity in metaphase I, whereas Ser-28 phosphorylation does not significantly change in maturing oocytes. Treatment of oocytes with 50 microM butyrolactone I (BL-I), an inhibitor of cyclin-dependent kinases, or cycloheximide (10 microg/ml), inhibitor of proteosynthesis, results in a block of oocytes in the germinal vesicle stage, when nuclear membrane remains intact; however, condensed chromosome fibers or highly condensed chromosome bivalents can be seen in the nucleoplasm of BL-I- or cycloheximide-treated oocytes, respectively. In these treated oocytes, no or only very weak AURKB activity and phosphorylation of histone H3 on Ser-10 can be detected after 27 h of treatment, whereas phosphorylation on Ser-28 is not influenced. These results suggest that AURKB activity and Ser-10 phosphorylation of histone H3 are not required for chromosome condensation in pig oocytes, but might be required for further processing of chromosomes during meiosis.  相似文献   

15.
The shugoshin/Mei-S332 family are proteins that associate with the chromosomal region surrounding the centromere (the pericentromere) and that play multiple and distinct roles in ensuring the accuracy of chromosome segregation during both mitosis and meiosis. The underlying role of shugoshins appears to be to serve as pericentromeric adaptor proteins that recruit several different effectors to this region of the chromosome to regulate processes critical for chromosome segregation. Crucially, shugoshins undergo changes in their localization in response to the tension that is exerted on sister chromosomes by the forces of the spindle that will pull them apart. This has led to the idea that shugoshins provide a platform for activities required at the pericentromere only when sister chromosomes lack tension. Conversely, disassembly of the shugoshin pericentromeric platform may provide a signal that sister chromosomes are under tension. Here the functions and regulation of these important tension-sensitive pericentromeric proteins are discussed.  相似文献   

16.
We have generated and characterized a novel site-specific antibody highly specific for the phosphorylated form of the amino-terminus of histone H3 (Ser10). In this study, we used this antibody to examine in detail the relationship between H3 phosphorylation and mitotic chromosome condensation in mammalian cells. Our results extend previous biochemical studies by demonstrating that mitotic phosphorylation of H3 initiates nonrandomly in pericentromeric heterochromatin in late G2 interphase cells. Following initiation, H3 phosphorylation appears to spread throughout the condensing chromatin and is complete in most cell lines just prior to the formation of prophase chromosomes, in which a phosphorylated, but nonmitotic, chromosomal organization is observed. In general, there is a precise spatial and temporal correlation between H3 phosphorylation and initial stages of chromatin condensation. Dephosphorylation of H3 begins in anaphase and is complete immediately prior to detectable chromosome decondensation in telophase cells. We propose that the singular phosphorylation of the amino-terminus of histone H3 may be involved in facilitating two key functions during mitosis: (1) regulate protein-protein interactions to promote binding of trans-acting factors that “drive” chromatin condensation as cells enter M-phase and (2) coordinate chromatin decondensation associated with M-phase. Received: 4 September 1997; in revised form: 14 September 1997 /Accepted: 14 September 1997  相似文献   

17.
During mitosis, chromosome condensation takes place, which entails the conversion of interphase chromatin into compacted mitotic chromosomes. Condensin I is a five-subunit protein complex that plays a central role in this process. Condensin I is targeted to chromosomes in a mitosis-specific manner, which is regulated by phosphorylation by mitotic kinases. Phosphorylation of histone H3at serine 10 (Ser10) occurs during mitosis and its physiological role is a longstanding question. We examined the function of Aurora B, a kinase that phosphorylates Ser10, in the chromosomal binding of condensin I and mitotic chromosome condensation, using an in vitro system derived from Xenopus egg extract. Aurora B depletion from a mitotic egg extract resulted in the loss of H3 phosphorylation, accompanied with a 50% reduction of chromosomal targeting of condensin I. Alternatively, a portion of condensin I was bound to sperm chromatin, and chromosome-like structures were assembled when okadaic acid (OA) was supplemented in an interphase extract that lacks Cdc2 activity. However, chromosomal targeting of condensin I was abolished when Aurora B was depleted from the OA-treated interphase extract. From these results, it is suggested that Aurora B-dependent and Cdc2-independent pathways of the chromosomal targeting of condensin I are present.  相似文献   

18.
Epigenetic regulation of pericentromeric heterochromatin is crucial for proper interactions between kinetochores and spindle microtubules governing accurate chromosome segregation. Here, we first examined the dynamic distribution of phosphorylated serine 10 and 28 on H3 during mouse oocyte maturation and early embryo development using immunofluorescent staining and confocal microscopy. Our results revealed strong signals of phosphorylated H3/ser10 and 28 in the pericentromeric heterochromatin area and continuous persistent staining of the chromosome periphery, respectively. A panel of specific antibodies against various acetylated lysine, dimethylated lysine or phosphorylated serine residues on histone H3 or H4 were used to investigate the effects of Trichostatin A (TSA), a general inhibitor of histone deacetylases (HDACs), on histone modifications of pericentromeric heterochromatin. Unexpectedly, TSA treatment was unable to alter the acetylation and methylation status of pericentromeric heterochromatin, however, it resulted in significant dephosphorylation of H3/ser10 at this site during mouse oocyte meiosis, which is likely to play a role in the TSA-induced defective chromosome segregation. Furthermore, by using ZM447439, an inhibitor of Aurora kinases, we revealed that Aurora kinases may participate in the regulation of histone phosphorylation during mouse oocyte maturation.  相似文献   

19.
20.
In this study, indirect immunofluorescence labeling was used to examine the cellular dynamic distribution of Thr11 phosphorylated H3 at mitosis in MCF-7 cells. The Thr11 phosphorylation was observed beginning at prophase at centromeres. Upon progression of mitosis, fluorescence signal was enhanced in the central region of the metaphase plate and maintained till anaphase at centromeres. During telophase, the fluorescent signal of Thr11 phosphorylated H3 disappears from centromeres, but the signal appears again at the midbody during cytokinesis, which suggests that the modified histones may take part in the formation of the midbody and play a crucial role in cytokinesis. Chromatin immunoprecipitation (ChIP) was used to confirm that Thr11 phosphorylated H3 is specifically associated with centromere DNA at prophase to metaphase, which is coincident with the results observed by immunofluorescence. In conclusion, there was a precise spatial and temporal correlation between H3 phosphorylation of Thr11 and stages of chromatin condensation. The timing of Thr11 phosphorylation and dephosphorylation in mitosis were similar to that reported for Ser10 phosphorylation of H3. The Thr11 phosphorylated H3 localized at centromeres during mitosis, which was different from the Ser10 phosphorylated H3 localized at telomere regions and Thr3 phosphorylated H3 localized along the chromosome arms. The results suggest that the Thr11 phosphorylation of histone H3 may play a specific role which was different from Ser10 and Thr3 phosphorylation in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号