首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study fluorescence emission and IR spectroscopy have been used to investigate the interaction of the class A (oxygen seeking "hard acid") metal Al(3+), with Suwannee River fulvic acid. Addition of Al(3+) ion results in a significant enhancement in fulvic acid fluorescence emission (at lambda(em)=424 nm) and significant red shift of the excitation wavelength (from lambda(ex)=324 nm to lambda(ex)=344 nm) at low pH values (pH approximately 4.0-5.0). At pH 4.0 (0.1 M ionic strength), where the predominant aluminum ion species is the "free" (aquo) ion, the fulvic acid fluorescence reaches 142% of the value in the absence of added metal ion. Analysis of the pH 4.0 and pH 5.0 fluorescence enhancement data with the nonlinear (single site) model of Ryan and Weber indicated binding constants in the range of 4.67.10(4)-2.87.10(6) M(-1) and concentrations of ligand sites in the range of 18.6.10(-6)-24.0.10(-6) M, both consistent with previous studies performed on both aquatic and soil fulvic acids. Companion fluorescence experiments performed on two other class A metal ions, Ca(2+) and Tb(3+), indicated no significant enhancement or quenching with Ca(2+) and only slight quenching with Tb(3+). Comparison of FT-IR spectra collected on fulvic acid alone and fulvic acid in the presence of the three class A metals (Al(3+), Ca(2+) and Tb(3+)) provides strong evidence for the involvement of carboxyl carbonyl functions in the binding of all three metal ions, which is not unexpected. The spectra also reveal, however, a very pronounced difference in the 4000-2000 cm(-1) IR spectral region between the Al(3+) spectrum and the Ca(2+) and Tb(3+) spectra. The -OH stretch spectral region in the Al(3+) spectrum has a major component shifted to higher energy (compared to fulvic acid alone or to fulvic acid in the presence of Ca(2+) or Tb(3+)). Even more striking is the emergence of a pronounced IR band at 2407 cm(-1), which is present only in the Al(3+) spectrum. The results of fluorescence and IR experiments with the model compounds salicylic acid and phthalic acid further confirm that both salicylic acid-like sites and phthalic acid-like sites are likely complexation sites for Al(3+) in fulvic acid and are major contributors to the observed spectroscopic changes associated with Al(3+) ion complexation. From a comparison of both the fluorescence and IR spectral results for all three class A metals, differing most strongly in the value of their ionic index, it seems clear that major sources of the deviation in spectral properties between Al(3+) and Ca(2+)/Tb(3+) is the unusually high value of its charge density and relatively low propensity for involvement in covalent bonding interactions (very high ionic index and relatively low covalent index in the Nieboer and Richardson classification of environmental metals), as well as affinity for certain functional groups.  相似文献   

2.
In an effort to understand the role of environmental metal ions in the interaction of charged pesticides with humic substances, a fluorescence study of the interaction of the widely-used herbicide 2,4-dichlorophenoxyacetic acid (DCPAA) with Al(3+) and Pd(2+) and Suwannee River fulvic acid (SRFA) was undertaken. Initial fluorescence experiments on binary solutions clearly indicated that both Al(3+) and Pd(2+) strongly interact with both SRFA and DCPAA when alone in solution with the metal ion. Titrations of SRFA with Al(3+) at pH values of 4.0, 3.0 and 2.0 revealed decreased degrees of fluorescence emission enhancement (at lambda(emission, max)=424 nm) with decreasing pH, consistent with the expected loss of rigidity in the SRFA-Al(3+) complexes formed as pH is lowered. In contrast, titrations of SRFA with Pd(2+) at all of these pH values resulted in significant fluorescence quenching. Al(3+) additions to solutions of DCPAA at pH values above the pK(a) (2.64) of DCPAA resulted primarily in significant changes in the wavelength of maximum emission (without significant quenching or enhancement of emission intensity), while Pd(2+) additions to DCPAA solutions resulted primarily in very significant fluorescence quenching. The DCPAA fluorescence results strongly support the formation of an Al(3+)-DCPAA complex at pH values above the pK(a) of DCPAA. The fluorescence results obtained for solutions of Pd(2+) and DCPAA are best explained by a collisional quenching mechanism, that is, energy transfer from excited DCPAA molecules to Pd(2+) following the collision of these two species in solution. Excitation-emission matrix plots obtained on ternary solutions (at environmentally-relevant pH 4.0) containing SRFA, DCPAA and metal ions (i.e., either Al(3+) or Pd(2+)) provides evidence (especially for systems containing Al(3+)) for the existence of ternary complexes between fulvic acid species, the herbicide DCPAA and metal ion, suggesting (at least at pH 4.0, where the predominant DCPAA species is negatively-charged) that metal ions may function to "bridge" negatively-charged fulvic acids to negatively-charged pesticides.  相似文献   

3.
Treatment with divalent metal ions such as cobalt (Co(2+)) or nickel (Ni(2+)) result in the stabilization of hypoxia-inducible factor-1alpha (HIF1alpha). Recently, HIF1alpha was shown to be ubiquitinated by an E3-ligase complex and be subsequently targeted for proteasomal degradation. In this study, we demonstrated that Co(2+) and Ni(2+) specifically bind to cullin-2. Mutant analysis revealed that cullin-2 possesses at least three sites for the binding. Furthermore, fluorescence spectroscopy revealed that only Co(2+) and Ni(2+) have the binding activity to cullin-2, but other metal ions, including Cu(2+), Ca(2+), Mg(2+), Mn(2+), and Zn(2+), did not. Finally, we found that Co(2+) and Ni(2+) do not bind to any components of the E3-ligase other than cullin-2, suggesting that cullin-2 is a key target of Co(2+) and Ni(2+). Interestingly, Co(2+) did not affect the complex formation of the ligase, suggesting that the metal binding to cullin-2 affects the function, but not the assembly of the E3-ligase.  相似文献   

4.
Secondary transporters of citrate in complex with metal ions belong to the bacterial CitMHS family, about which little is known. The transport of metal-citrate complexes in Streptomyces coelicolor has been investigated. The best cofactor for citrate uptake in Streptomyces coelicolor is Fe(3+), but uptake was also noted for Ca(2+), Pb(2+), Ba(2+), and Mn(2+). Uptake was not observed with the Mg(2+), Ni(2+), or Co(2+) cofactor. The transportation of iron- and calcium-citrate makes these systems unique among the CitMHS family members reported to date. No complementary uptake akin to that observed for the CitH (Ca(2+), Ba(2+), Sr(2+)) and CitM (Mg(2+), Ni(2+), Mn(2+), Co(2+), Zn(2+)) systems of Bacillus subtilis was noted. Competitive experiments using EGTA confirmed that metal-citrate complex formation promoted citrate uptake. Uptake of free citrate was not observed. The open reading frame postulated as being responsible for the metal-citrate transport observed in Streptomyces coelicolor was cloned and overexpressed in Escherichia coli strains with the primary Fe(3+)-citrate transport system (fecABCDE) removed. Functional expression was successful, with uptake of Ca(2+)-citrate, Fe(3+)-citrate, and Pb(2+)-citrate observed. No free-citrate transport was observed in IPTG (isopropyl-beta-d-thiogalactopyranoside)-induced or -uninduced E. coli. Metabolism of the Fe(3+)-citrate and Ca(2+)-citrate complexes, but not the Pb(2+)-citrate complex, was observed. Rationalization is based on the difference in metal-complex coordination upon binding of the metal by citrate.  相似文献   

5.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The present paper deals with the study of the effect of some kinds of metal ions on the enzyme. The positive monovalent alkali metal ions (Li(+), Na(+) and K(+)) have no effect on the enzyme; positive bivalent alkaline-earth metal ions (Mg(2+), Ca(2+) and Ba(2+)) and transition metal ions (Mn(2+), Co(2+), Ni(2+) and Cd(2+)) activate the enzyme; heavy metal ions (Hg(2+), Ag(+), Bi(2+), Cu(2+) and Zn(2+)) inhibit the enzyme. The activation of magnesium ion on the enzyme appears to be a partial noncompetitive type. The kinetic model has been set up and a new plot to determine the activation constant of Mg(2+) was put forward. From the plot, we can easily determine the activation constant (K(a)) value and the activation ratio of Mg(2+) on the enzyme. The inhibition effects of Cu(2+) and Hg(2+) on the enzyme are of noncompetitive type. The inhibition constants have been determined. The inhibition effect of Hg(2+) is stronger than that of Cu(2+).  相似文献   

6.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

7.
In the present work, we studied the interactions of recombinant alpha1 and alpha2 integrin I domains with cations Tb(3+), Mn(2+), Mg(2+) and Ca(2+). We observed that alpha1 and alpha2 I domains bind these cations with significantly different characteristics. The binding of Mg(2+) by the alpha1 I domain was accompanied by significant changes of tryptophan fluorescence which could be interpreted as a conformational change. Comparison of the alpha1 integrin I domain structure obtained by comparative modeling with a known structure of the alpha2 integrin I domain shows distinct differences in the metal ion binding sites which could explain the differences in cation binding.  相似文献   

8.
To investigate the metal-binding properties of KChIP1, the interaction of KChIP1 and mutated KChIP1 with divalent cations (Mg(2+), Ca(2+), Sr(2+), and Ba(2+)) was explored by 8-anilinonaphthalene-1-sulfonate (ANS) fluorescence. It showed that KChIP1 possessed two types of Ca(2+)-binding sites, high-affinity and low-affinity Ca(2+)-binding sites. However, only low-affinity-binding site for Mg(2+), Sr(2+), and Ba(2+) was observed. The metal-binding properties of KChIP1 are not appreciably affected after removal of the N-terminal portion and EF-hand 1. Deleting the EF-hand 4 of KChIP1 abolishes its high-affinity Ca(2+)-binding site, but retains the intact low-affinity-binding site for metal ions. A decrease in the nonpolarity of ANS-binding site occurs with all mutants. However, the binding of ANS with KChIP1 is no longer observed after removal of EF-hands 3 and 4. Intermolecular interaction assessed by chemical cross-linking suggested that KChIP1 had a propensity to form dimer in the absence of metal ions, and a KChIP1 tetramer was pronouncedly produced in the presence of metal ions. Noticeably, the oligomerization state depends on the integrity of EF-hand 4. Taken together, our data suggest that EF-hand 4 is of structural importance as well as functional importance for fulfilling the physiological function of KChIP1.  相似文献   

9.
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.  相似文献   

10.
Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage.  相似文献   

11.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

12.
The kinetic effects of the binding of various metal ions (Ca(2+), Cd(2+), Co(2+), Mg(2+), Mn(2+), Sr(2+) and Zn(2+)) to apo bovine alpha-lactalbumin has been monitored by means of stopped-flow fluorescence spectroscopy. Our results show that the measured rate constant for the binding of metal ions to the Ca(2+)-site increases with increasing binding constant. This is, however, not the case for metal ions binding to the Zn(2+)-site. The binding experiments performed at different temperatures allowed us to calculate the activation energy for the transition from the metal-free to the metal-loaded state of the protein. These values do not depend on the nature of the metal ion but are correlated with the type of binding site. As a result, we were able to demonstrate that Mg(2+), a metal ion which was thought to bind to the Ca(2+)-site, shows the same binding characteristics as Co(2+) and Zn(2+) and therefore most likely interacts with the residues belonging to the Zn(2+)-binding site.  相似文献   

13.
FT Senguen  Z Grabarek 《Biochemistry》2012,51(31):6182-6194
Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahedrally coordinated Mg(2+) and Mn(2+) stabilize the closed-domain, apo-like conformation, while tetrahedrally coordinated Zn(2+) ions bind at the protein surface and do not compete with Ca(2+). The relative positions of bound Mg(2+) and Mn(2+) within the EF-hand loops are similar to those of Ca(2+); however, the Glu side chain at position 12 of the loop, whose bidentate interaction with Ca(2+) is critical for domain opening, does not bind directly to either Mn(2+) or Mg(2+), and the vacant ligand position is occupied by a water molecule. We conclude that this critical interaction is prevented by specific stereochemical constraints imposed on the ligands by the EF-hand β-scaffold. The structures suggest that Mg(2+) contributes to the switching off of calmodulin activity and possibly other EF-hand proteins at the resting levels of Ca(2+). The Mg(2+)-bound N-CaM structure also provides a unique view of a transiently bound hydrated metal ion and suggests a role for the hydration water in the metal-induced conformational change.  相似文献   

14.
15.
Non-enzymic transamination reactions at 85 degrees between various amino acids and alpha-oxoglutaric acid are catalysed by metal ions, e.g. Al(3+), Fe(2+), Cu(2+) and Fe(3+). The reaction is optimum at pH4.0. Of the 14 amino acids studied histidine is the most active. In the presence of Al(3+) histidine transaminates with alpha-oxoglutaric acid, forming glutamic acid and Al(3+)-imidazolylpyruvic acid complex as the end products. However, in the presence of Fe(2+) or Cu(2+) the products are glutamic acid and a 1:2 metal ion-imidazolylpyruvic acid chelate. The greater effectiveness of histidine in these reactions is attributed to the presence of the tertiary imidazole nitrogen atom, which is involved in the formation of stable sparingly soluble metal ion-imidazolylpyruvic acid complexes or chelates as end products of these reactions. Of the metal ions studied only Al(3+), Fe(2+), Fe(3+) and Cu(2+) are effective catalysts for the transamination reactions, and EDTA addition completely inhibits the catalytic effect of the Al(3+). Spectrophotometric evidence is presented to demonstrate the presence of metal ion complexes of Schiff bases of histidine as intermediates in the transamination reactions. These results may contribute to understanding the role of histidine in enzyme catalysis.  相似文献   

16.
Complexation constants have been determined by potentiometric titration and spectrophotometric measurements for several biologically relevant divalent metals (Ca(2+), Cu(2+), Zn(2+)) as well as Al(3+) with the sulfonated tris(8-hydroxyquinolinate) tripodal ligand O-TRENSOX. The values demonstrate great selectivity of O-TRENSOX for Fe(3+) according to the sequence Fe(3+) >Cu(2+)>Zn(2+)>Ca(2+). This selectivity is compared to that shown by tris(hydroxamate) and tris(catecholate) ligands. (1)H NMR spectroscopy of the diamagnetic complexes have been carried out in (2)H(2)O solutions.  相似文献   

17.
The removal by crab shell of mixed heavy metal ions in aqueous solution   总被引:12,自引:0,他引:12  
In order to examine the inhibition effect of other heavy metal ions on the removal by crab shell of heavy metal ions in aqueous solutions, three ions (Pb(2+), Cd(2+), Cr(3+)) were used in single, binary and ternary systems. In single heavy metal ion systems, the removals of Cr(3+) and Pb(2+) were much higher than that of Cd(2+). In binary heavy metal ions systems, Cd(2+) did not affect Pb(2+) removal while Cr(3+) had a severe inhibition effect on the removal of Pb(2+). Cd(2+) removal was slightly affected by the presence of Pb(2+); however, it was severely affected by the presence of Cr(3+). The inhibitory effect of Cd(2+) on Cr(3+) was relatively lower than that of Pb(2+).  相似文献   

18.
We examined the metal ion cofactor preference for MST3 (mammalian Ste20-like kinase 3) of the Ste20 serine/threonine kinase family. Four metal ions (Mg(+2), Mn(+2), Zn(2+), and Co(2+)) activate endogenous, exogenous, and baculovirus-expressed recombinant MST3 within the physiological concentration range. In contrast, Fe(+2) and Ca(+2) do not function as MST3 cofactors. Mn(2+), Co(2+), and Mg(2+)-dependent autophosphorylation of MST3 is mainly on threonine residue while Zn(2+)-stimulated MST3 autophosphorylation is on both serine and threonine residues. The distinct autophosphorylation pattern on MST3 suggests that MST3 may exert various types of kinase reactions depending on the type of metal ion cofactor used. To our knowledge, this is the first report showing Zn(2+) as the metal ion cofactor of a recombinant serine/threonine kinase.  相似文献   

19.
Lanthanides are useful probes in Ca2+ binding proteins, including sarcoplasmic reticulum (Ca2+,Mg2+)-ATPase. Here, we report that lanthanides compete with Rb+ and Na+ for occlusion in renal (Na+,K+)-ATPase. The lanthanides appear to bind at a single site and act as competitive antagonists, without themselves becoming occluded. All lanthanides tested are effective with the order of potencies Pr greater than Nd greater than La greater than Eu greater than Tb greater than Ho greater than Er, but differences are small. The presence of Mg2+ ions does not affect competition of La3+ with Na+ or K+ suggesting that the effects are not exerted via divalent metal sites. Lanthanides compete with Rb+ and Na+ in membranes digested with trypsin so as to produce 19-kDa and smaller fragments of the alpha-chain (Karlish, S.J.D., Goldshleger, R., and Stein, W. D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4566-4570), also suggestive of a direct interaction of lanthanides with Na+ and K+ sites. Effects of lanthanides on conformational changes of fluorescein-labeled (Na+,K+)-ATPase are Na(+)-like. They stabilize the E1 state and compete with K+ ions. The Ki for La3+ is 0.445 microM. The apparent affinity in fluorescence assays is proportional to enzyme concentration (Ki = 32.4*[protein] + 0.445 microM La3+), suggesting that lanthanides are also bound nonspecifically (possibly to phospholipids). Direct assays confirm that Tb3+ binding is nonspecific. Measurements of the rate of various conformational transitions show that the rate of E2(K+)----E1(X) (X = Na+ or La3+) is significantly inhibited by La3+ compared to Na+. La3+ ions also slightly accelerate the rate of the E1----E2(K+) conformational transition. The dissociation rate of La3+ has been measured by monitoring the rate of E1(La3+)----E2(K+). It is 1.741 s-1 at 25 degrees C. Based on this value, it is unlikely that La3+ ions are stably occluded, consistent with the conclusion from occlusion experiments. In the future, lanthanides bound to monovalent cation sites with high affinity may become useful probes for location and characterization of sites, although it will be necessary to take into account the large amount of nonspecific binding.  相似文献   

20.
Y-Family DNA polymerase IV (Dpo4) from Sulfolobus solfataricus serves as a model system for eukaryotic translesion polymerases, and three-dimensional structures of its complexes with native and adducted DNA have been analyzed in considerable detail. Dpo4 lacks a proofreading exonuclease activity common in replicative polymerases but uses pyrophosphorolysis to reduce the likelihood of incorporation of an incorrect base. Mg(2+) is a cofactor for both the polymerase and pyrophosphorolysis activities. Despite the fact that all crystal structures of Dpo4 have been obtained in the presence of Ca(2+), the consequences of replacing Mg(2+) with Ca(2+) for Dpo4 activity have not been investigated to date. We show here that Ca(2+) (but not Ba(2+), Co(2+), Cu(2+), Ni(2+), or Zn(2+)) is a cofactor for Dpo4-catalyzed polymerization with both native and 8-oxoG-containing DNA templates. Both dNTP and ddNTP are substrates of the polymerase in the presence of either Mg(2+) or Ca(2+). Conversely, no pyrophosphorolysis occurs in the presence of Ca(2+), although the positions of the two catalytic metal ions at the active site appear to be very similar in mixed Mg(2+)/Ca(2+)- and Ca(2+)-form Dpo4 crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号