首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The classic fur trade records on Canadian lynx (Lynx canadensis) have rarely been analysed in direct conjunction with data on its principal prey, the snowshoe hare (Lepus americanus). Comparable long-term data for hare exist only for a region south of Hudson Bay. We fitted a bivariate log-linear time-series model to this hare and lynx data to disentangle the within- and between-population interactions of these species. To reduce problems with fur returns being non-normal and non-linearly related to abundance, we transformed the fur returns to a normal distribution based on sample quantiles. The estimated effect on next year’s lynx abundance of a 1% increase in current hare abundance was a 0.23% (SE = 0.05) increase in lynx. Conversely, a 1% increase in current lynx abundance corresponded to a 0.46% (SE = 0.12) decrease in next year’s hare abundance. This contrasts with some earlier studies. However, these studies mixed hare data from south of Hudson Bay with lynx totals for all of Canada. Despite this asymmetry of interaction strengths, coefficients of determination were similar for hare versus lynx and lynx versus hare, because hare abundance varies more than lynx. Both species showed clear intraspecific density-dependence of about equal strength. A 1% increase in current abundance increased next year’s abundance by about 0.75%. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
One of the most popular data sets in ecology, that of lynx fur returns, is analysed in order to look for evidence for a bifurcation process. This bifurcation seems to be present from the observation of sudden shifts in the amplitude of oscillations of the lynx time series. Schaffer first proposed the possibility for such a bifurcation in 1985, and suggested that a possible source for the qualitative change of lynx's fluctuations was an increased trapping effort, which eventually lead to high-amplitude, chaotic dynamics. By studying the available information from the Hudson Bay Company records, we have found evidence for such an increased trapping pressure that (i) rapidly rose close to the shift from low-amplitude to large-amplitude fluctuations around 1820, and (ii) decreased around 1910, when there is another shift again to damped small oscillations. Although an increase in the top-predator mortality in a three-species food web typically leads to simpler dynamics and eventual predator extinction, here we show that a recent model involving a minimum bound in the lynx population, due to the presence of alternative prey in the lynx diet, consistently supports the presence of a bifurcation phenomenon.  相似文献   

3.
L. V. Nedorezov 《Biophysics》2016,61(1):149-154
The Lotka–Volterra model of predator–prey dynamics was used for approximation of the wellknown empirical time series on the lynx–hare system in Canada that was collected by the Hudson Bay Company in 1845–1935. The model was assumed to demonstrate satisfactory data approximation if the sets of deviations of the model and empirical data for both time series satisfied a number of statistical criteria (for the selected significance level). The frequency distributions of deviations between the theoretical (model) trajectories and empirical datasets were tested for symmetry (with respect to the Y-axis; the Kolmogorov–Smirnov and Lehmann–Rosenblatt tests) and the presence or absence of serial correlation (the Swed–Eisenhart and “jumps up–jumps down” tests). The numerical calculations show that the set of points of the space of model parameters, when the deviations satisfy the statistical criteria, is not empty and, consequently, the model is suitable for describing empirical data.  相似文献   

4.
Mathematical models of the snowshoe hare (Lepus americanus) and Canada lynx (Lynx canadensis) population cycles in the boreal forest have largely focused on the interaction between a single specialist predator and its prey. Here, we consider the role that other hare predators play in shaping the cycles, using a predator–prey model for up to three separate specialist predators. We consider the Canada lynx, coyote (Canis latrans) and great horned owl (Bubo virginianus). Our model improves on past modelling efforts in two ways: (1) our model solutions more closely represent the boreal hare and predator cycles with respect to the cycle period, maximum and minimum hare densities and maximum and minimum predator densities for each predator, and (2) our model sheds light on the role each specialist plays in regulation of the hare cycle, in particular, the dynamics of the raptor appear to be crucial for characterising the low hare densities correctly.  相似文献   

5.
《Acta Oecologica》2007,31(1):79-85
Adding or removing a top-predator is known to affect lower trophic levels with potentially large, indirect effects on primary production. However, little is known about how predator diversity may affect lower trophic levels, or how adding or removing a top-predator influences the effects of predator diversity. Using aquatic mesocosms containing three and four trophic levels, we tested whether intermediate predator diversity affected predation on consumers and if top-predator presence influenced such effects. We found that the presence of intermediate predators suppressed the consumer population and that this suppression tended to increase with increased intermediate predator diversity when the top-predator was absent. However, with the top-predator present, increased intermediate predator diversity showed the opposite effect on the consumers compared to without a top-predator, i.e. decreased suppression of consumers with increased diversity. Hence, in our study, the loss of intermediate predator species weakened or strengthened predator–prey interactions depending on if the top-predator was present or not, while loss of the top-predator only strengthened the predator–prey interactions. Therefore, the loss of a predator species may render different, but perhaps predictable effects on the functioning of a system depending on from which trophic level it is lost and on the initial number of species in that trophic level.  相似文献   

6.
Understanding the effects of climate change on species’ persistence is a major research interest; however, most studies have focused on responses at the northern or expanding range edge. There is a pressing need to explain how species can persist at their southern range when changing biotic interactions will influence species occurrence. For predators, variation in distribution of primary prey owing to climate change will lead to mismatched distribution and local extinction, unless their diet is altered to more extensively include alternate prey. We assessed whether addition of prey information in climate projections restricted projected habitat of a specialist predator, Canada lynx (Lynx canadensis), and if switching from their primary prey (snowshoe hare; Lepus americanus) to an alternate prey (red squirrel; Tamiasciurus hudsonicus) mitigates range restriction along the southern range edge. Our models projected distributions of each species to 2050 and 2080 to then refine predictions for southern lynx on the basis of varying combinations of prey availability. We found that models that incorporated information on prey substantially reduced the total predicted southern range of lynx in both 2050 and 2080. However, models that emphasized red squirrel as the primary species had 7–24% lower southern range loss than the corresponding snowshoe hare model. These results illustrate that (i) persistence at the southern range may require species to exploit higher portions of alternate food; (ii) selection may act on marginal populations to accommodate phenotypic changes that will allow increased use of alternate resources; and (iii) climate projections based solely on abiotic data can underestimate the severity of future range restriction. In the case of Canada lynx, our results indicate that the southern range likely will be characterized by locally varying levels of mismatch with prey such that the extent of range recession or local adaptation may appear as a geographical mosaic.  相似文献   

7.
Population dynamics of specialist carnivores are closely linked to prey availability, but the extent of variability in diet breadth of individual carnivores relative to natural variability in the abundance of their primary prey is not well understood. Canada lynx (Lynx canadensis) specialize on snowshoe hares (Lepus americanus) and exhibit cyclic fluctuations in abundance that lag 1–2 years behind those of snowshoe hares. Declining hare densities spur demographic changes in lynx, but it is unclear whether a corresponding increase in diet breadth occurs: (1) broadly across a lynx population; (2) only among individuals who are able to effectively switch to alternative prey; or (3) only among individuals who cannot capture sufficient primary prey. We measured stable isotope ratios of lynx muscle tissue spanning a cyclic increase and decline in hare density (1998–2001) in Fort Providence, NT, Canada. We found that lynx cohorts responded differently to hare population change, with yearling animals having broader diets at low hare densities, while adults and dependent juveniles maintained a constant diet through the initial decline in hare density. This result was consistent irrespective of lynx sex and indicates that yearling lynx likely are forced to adopt a broader diet when primary prey densities decline. Our results imply that select cohorts of specialist carnivores can exhibit high dietary plasticity in response to changes in primary prey abundance, prompting the need to determine whether increased diet breadth in young lynx is a successful strategy for surviving through periods of snowshoe hare scarcity. In this way, cohort‐specific niche expansion could strongly affect the dynamics of organisms exhibiting population cycles.  相似文献   

8.
Organisms embedded within food webs must balance arms races with their predators and prey. For venom users, venom may mediate each arms race, but the dynamical evolutionary changes in venom production in response to the two arms races are still poorly understood. Here, we use a simple model to evaluate the evolutionary response of a venomous consumer to the presence of an apex generalist predator and evolution of the consumer’s prey. We find that introduction of the apex predator can weaken the arms race between the two lower trophic levels. In addition, when consumer prey capture and predator defense venoms functionally overlap, a reduced evolutionary response in the prey population can drive investment in venom used for prey capture going beyond what is optimal for subduing prey. These dynamics suggest that interactions with multiple trophic levels can substantially alter the venom complexity in predatory venomous animals and may explain the paradox of the overkill hypothesis.  相似文献   

9.
ABSTRACT The roles that diet and prey abundance play in habitat selection of Canada lynx (Lynx canadensis) in the contiguous United States is poorly understood. From 1998–2002, we back-tracked radiocollared lynx (6 F, 9 M) for a distance of 582 km and we located 86 kills in northwestern Montana, USA. Lynx preyed on 7 species that included blue grouse (Dendragapus obscurus), spruce grouse (Canachites canadensis), northern flying squirrel (Glaucomys sabrinus), red squirrel (Tamiasciurus hudsonicus), snowshoe hare (Lepus americanus), least weasel (Mustela nivalis), and white-tailed deer (Odocoileus virginianus). Snowshoe hares (69 kills) accounted for 96% (4-yr average, range = 94–99%) of prey biomass during the sample period. Red squirrels were the second-most-common prey (11 kills), but they only provided 2% biomass of the winter diet. Red squirrels contributed little to the lynx diet despite low hare densities. A logistic regression model of snowshoe hare, red squirrel, and grouse abundance, as indexed by the number of track crossings of use and available lynx back-tracks, was a significant (Wald statistic = 19.03, df = 3, P < 0.001) predictor of habitat use. As we expected, lynx (P < 0.001) selected use-areas with higher snowshoe hare abundance compared to random expectation. However, the red squirrel index had a weak (P = 0.087) negative relationship to lynx use, and grouse was nonsignificant (P = 0.432). Our results indicate that lynx in western Montana prey almost exclusively on snowshoe hares during the winter with little use of alternative prey. Thus, reductions in horizontal cover for hares would degrade lynx habitat.  相似文献   

10.
Human activity is leading to changes in the mean and variability of climatic parameters in most locations around the world. The changing mean has received considerable attention from scientists and climate policy makers. However, recent work indicates that the changing variability, that is, the amplitude and the temporal autocorrelation of deviations from the mean, may have greater and more imminent impact on ecosystems. In this paper, we demonstrate that changes in climate variability alone could drive cyclic predator–prey ecosystems to extinction via so-called phase-tipping (P-tipping), a new type of instability that occurs only from certain phases of the predator–prey cycle. We construct a mathematical model of a variable climate and couple it to two self-oscillating paradigmatic predator–prey models. Most importantly, we combine realistic parameter values for the Canada lynx and snowshoe hare with actual climate data from the boreal forest. In this way, we demonstrate that critically important species in the boreal forest have increased likelihood of P-tipping to extinction under predicted changes in climate variability, and are most vulnerable during stages of the cycle when the predator population is near its maximum. Furthermore, our analysis reveals that stochastic resonance is the underlying mechanism for the increased likelihood of P-tipping to extinction.  相似文献   

11.
Abstract The ecology of Canada lynx (Lynx canadensis) and their main prey, snowshoe hares (Lepus americanus), is poorly understood in southern Canada and the contiguous United States compared to the boreal forest of Canada and Alaska, USA, where both species are well studied. However, given recent listing of lynx under the Endangered Species Act, accurate understanding of lynx and snowshoe hare ecology and conservation requirements in the United States is a high priority. We critically examined unchallenged perceptions and important research needs related to lynx and hare ecology and conservation at the southern extent of their range. Contrary to popular dogma, lynx do not require old-growth forest for denning, but further research on lynx and hare use of fragmented landscapes at lower latitudes is required. The contention that southern lynx are subject to higher interference or exploitative competition compared to their northern counterparts remains without strong empirical support. Lynx rely more on red squirrels (Tamiasciurus hudsonicus) and possibly other alternate prey at lower latitudes, but hares are the predominant food type for lynx across their range. Southern lynx and hare populations do not exhibit periodic cyclicity, but harvest statistics suggest that lynx abundance in the southern range is highly variable, implying that numerical fluctuations likely are fueled by immigration from Canada. Southern lynx population viability in the absence of ingress is suspect and thus maintaining connectivity with northern areas of occupancy should be a priority. Successful conservation of lynx populations in the contiguous United States will require 1) improved understanding of lynx population and habitat ecology at lower latitudes, 2) protection and management of large tracts of lynx and snowshoe hare habitat, and 3) ensured connectivity between lynx populations at the core and periphery of the species' range. However, in light of the numerous challenges facing conservation of populations of many species at their southern distributional limit, the long-term prognosis for lynx in the southern range currently is uncertain.  相似文献   

12.
The classic 10‐year population cycle of snowshoe hares (Lepus americanus, Erxleben 1777) and Canada lynx (Lynx canadensis, Kerr 1792) in the boreal forests of North America has drawn much attention from both population and community ecologists worldwide; however, the ecological mechanisms driving the 10‐year cyclic dynamic pattern are not fully revealed yet. In this study, by the use of historic fur harvest data, we constructed a series of generalized additive models to study the effects of density dependence, predation, and climate (both global climate indices of North Atlantic Oscillation index (NAO), Southern Oscillation index (SOI) and northern hemispheric temperature (NHT) and local weather data including temperature, rainfall, and snow). We identified several key pathways from global and local climate to lynx with various time lags: rainfall shows a negative, and snow shows a positive effect on lynx; NHT and NAO negatively affect lynx through their positive effect on rainfall and negative effect on snow; SOI positively affects lynx through its negative effect on rainfall. Direct or delayed density dependency effects, the prey effect of hare on lynx and a 2‐year delayed negative effect of lynx on hare (defined as asymmetric predation) were found. The simulated population dynamics is well fitted to the observed long‐term fluctuations of hare and lynx populations. Through simulation, we find density dependency and asymmetric predation, only producing damped oscillation, are necessary but not sufficient factors in causing the observed 10‐year cycles; while extrinsic climate factors are important in producing and modifying the sustained cycles. Two recent population declines of lynx (1940–1955 and after 1980) were likely caused by ongoing climate warming indirectly. Our results provide an alternative explanation to the mechanism of the 10‐year cycles, and there is a need for further investigation on links between disappearance of population cycles and global warming in hare–lynx system.  相似文献   

13.
Trapping data have a long and rich history of use in monitoring furbearer populations in North America but understanding the influences of variation in trapper harvest is important. Many factors besides abundance can cause variation in trapper harvest, including socioeconomics, weather, and motivation. The relationships between these extrinsic factors and trapper harvest may change temporally, which may obscure the causal understanding of variation in trapper harvest. We tested for changes in the relationships between pelt price and trapper numbers, and pelt price and harvest per trapper for raccoons (Procyon lotor) in Illinois, USA, from 1976–2018 while controlling for other socioeconomic (gasoline price, unemployment) and weather (temp, snow depth) factors. The annual raccoon harvest showed no clear trend, whereas the number of raccoon trappers declined markedly from approximately 1976–1990 in conjunction with pelt prices, after which the number of trappers remained relatively stable and were not significantly affected by pelt price. In contrast, harvest per trapper increased markedly during the 1990s and showed a significant negative relationship with pelt price pre-1990 but a positive relationship post-1990. We propose that declines in pelt prices resulted in a loss of less experienced or economically incentivized trappers, whereas contemporary trappers may continue trapping primarily for non-economic reasons. Our study highlights the potential for using non-linear relationships between trapper harvest data and socioeconomic covariates to help understand the influences of temporal variation in trapper harvest data. © 2020 The Wildlife Society.  相似文献   

14.
Sheriff MJ  Krebs CJ  Boonstra R 《Oecologia》2011,166(3):593-605
Predation is a central organizing process affecting populations and communities. Traditionally, ecologists have focused on the direct effects of predation—the killing of prey. However, predators also have significant sublethal effects on prey populations. We investigated how fluctuating predation risk affected the stress physiology of a cyclic population of snowshoe hares (Lepus americanus) in the Yukon, finding that they are extremely sensitive to the fluctuating risk of predation. In years of high predator numbers, hares had greater plasma cortisol levels at capture, greater fecal cortisol metabolite levels, a greater plasma cortisol response to a hormone challenge, a greater ability to mobilize energy and poorer body condition. These indices of stress had the same pattern within years, during the winter and over the breeding season when the hare:lynx ratio was lowest and the food availability the worst. Previously we have shown that predator-induced maternal stress lowers reproduction and compromises offspring’s stress axis. We propose that predator-induced changes in hare stress physiology affect their demography through negative impacts on reproduction and that the low phase of cyclic populations may be the result of predator-induced maternal stress reducing the fitness of progeny. The hare population cycle has far reaching ramifications on predators, alternate prey, and vegetation. Thus, predation is the predominant organizing process for much of the North American boreal forest community, with its indirect signature—stress in hares—producing a pattern of hormonal changes that provides a sensitive reflection of fluctuating predator pressure that may have long-term demographic consequences.  相似文献   

15.
We evaluated patterns of occurrence and non-occurrence for Canada lynx (Lynx canadensis) across a 16,530-km2 study area in Maine to provide a better understanding of lynx habitat selection and habitat ecology on commercially managed forestlands in the Acadian Forest. Because of the influence of forest structure on lynx habitat selection and abundance of their primary prey, the snowshoe hare (Lepus americanus), and to improve our ability to build robust models, we used habitat information derived from a time series of Landsat satellite imagery spanning the period 1973–2004. We defined and mapped 10 forest types based on forest harvest history, time since harvest, and current forest condition. We compared a suite of models to evaluate relative influences of forest composition, habitat patch configuration, and hare density on habitat selection by lynx at the landscape scale. Occupied areas had greater average hare densities and percentage of mature conifer. Average hare density in occupied areas (0.74 hares/ha) was greater than in unoccupied areas (0.62 hares/ha), but was less than previous research has suggested may be necessary to support lynx populations in the southern portion of the species' range. No occupied areas occurred where average hare density was <0.5 hares/ha. Average hare density at the landscape-scale was strongly influenced by amount of high-quality hare habitat (i.e., conifer or mixedwood regenerating forest, 15–35 yr post-harvest). Edge density between mature conifer and high-quality hare habitat was substantially greater in occupied areas compared to unoccupied areas. Juxtaposition of those 2 forest types may provide edge habitat where lynx experience easier travel and improved access to prey in landscapes with extensive areas of high-quality hare habitat where travel and access may be somewhat limited by high understory stem density. Probability of occurrence declined nonlinearly with changes in hare density and percent mature conifer forest in the landscape; thus, suitability of currently occupied landscapes could change markedly with future changes in landscape-level hare densities and changing habitat associated with forest management. Where lynx conservation is a priority, we recommend that managers focus on creating and maintaining a minimum of 27% high-quality hare habitat within 100-km2 areas to promote landscape-scale hare densities >0.5 hares/ha. © The Wildlife Society, 2013  相似文献   

16.
The lynx Lynx canadensis is a common predator in the boreal forests of North America. Its population fluctuates during a 9- to 11-year cycle in synchrony with the population size of its main prey, the snowshoe hare Lepus americanus. Using adult museum specimens, we studied changes in skull (and hence body) size of the lynx in Alaska during the second half of the 20th century. The population cycle in Alaska averaged 9 years, similar to that reported in the neighbouring Yukon. Using harvest data of lynx as an estimate of population size, we found that skull size was negatively related to population size. This relationship was strongest not for the population density in the year of death (X), but for year X-3, a carry-over effect from the first year (or years) of life, indicating that conditions during the fast-growth years are determining body size. We suggest that the density-dependent effect is probably due to changes in food supply, either resulting from the adverse effects of competition or a possible diminished availability of food. Two skull parameters decreased significantly during the second half of the 20th century. We do not know the cause for the year effect and suggest that it might be due to a long-term change in the availability of prey. Canine size did not change during the study period, probably an indication that snowshoe hares maintained their status as the main prey of the lynx throughout the study period. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
In this paper we explore variation in the predator-prey interaction between mink Mustela vison and muskrat Ondatra zibethicus across Canada based on 25 years of mink (predator) and muskrat (prey) data from the Hudson's Bay Company. We show that predator–prey interactions have stronger signatures in the west of Canada than in the east. In particular, we show that the observed phase plot trajectories of mink and muskrat rotate significantly clock-wise, consistent with predator–prey theory. We also investigate four phases of the mink muskrat interaction sequence (predator crash phase, prey recovery phase, etc.) and show that they are all consistent with a strong coupling in the west, whereas the presence of generalist predators and alternative preys can explain deviations from this pattern in the east.  相似文献   

18.
The theory of predation risk effects predicts behavioral responses in prey when risk of predation is not homogenous in space and time. Prey species are often faced with a tradeoff between food and safety in situations where food availability and predation risk peak in the same habitat type. Determining the optimal strategy becomes more complex if predators with different hunting mode create contrasting landscapes of risk, but this has rarely been documented in vertebrates. Roe deer in southeastern Norway face predation risk from lynx, as well as hunting by humans. These two predators differ greatly in their hunting methods. The predation risk from lynx, an efficient stalk‐and‐ambush predator is expected to be higher in areas with dense understory vegetation, while predation risk from human hunters is expected to be higher where visual sight lines are longer. Based on field observations and airborne LiDAR data from 71 lynx predation sites, 53 human hunting sites, 132 locations from 15 GPS‐marked roe deer, and 36 roe deer pellet locations from a regional survey, we investigated how predation risk was related to terrain attributes and vegetation classes/structure. As predicted, we found that increasing cover resulted in a contrasting lower predation risk from humans and higher predation risk from lynx. Greater terrain ruggedness increased the predation risk from both predators. Hence, multiple predators may create areas of contrasting risk as well as double risk in the same landscape. Our study highlights the complexity of predator–prey relationship in a multiple predator setting. Synthesis In this study of risk effects in a multi‐predator context, LiDAR data were used to quantify cover in the habitat and relate it to vulnerability to predation in a boreal forest. We found that lynx and human hunters superimpose generally contrasting landscapes of fear on a common prey species, but also identified double‐risk zones. Since the benefit of anti‐predator responses depends on the combined risk from all predators, it is necessary to consider complete predator assemblages to understand the potential for and occurrence of risk effects across study systems.  相似文献   

19.
One of the central goals of the field of population ecology is to identify the drivers of population dynamics, particularly in the context of predator–prey relationships. Understanding the relative role of top‐down versus bottom‐up drivers is of particular interest in understanding ecosystem dynamics. Our goal was to explore predator–prey relationships in a boreal ecosystem in interior Alaska through the use of multispecies long‐term monitoring data. We used 29 years of field data and a dynamic multistate site occupancy modeling approach to explore the trophic relationships between an apex predator, the golden eagle, and cyclic populations of the two primary prey species available to eagles early in the breeding season, snowshoe hare and willow ptarmigan. We found that golden eagle reproductive success was reliant on prey numbers, but also responded prior to changes in the phase of the snowshoe hare population cycle and failed to respond to variation in hare cycle amplitude. There was no lagged response to ptarmigan populations, and ptarmigan populations recovered quickly from the low phase. Together, these results suggested that eagle reproduction is largely driven by bottom‐up processes, with little evidence of top‐down control of either ptarmigan or hare populations. Although the relationship between golden eagle reproductive success and prey abundance had been previously established, here we established prey populations are likely driving eagle dynamics through bottom‐up processes. The key to this insight was our focus on golden eagle reproductive parameters rather than overall abundance. Although our inference is limited to the golden eagle–hare–ptarmigan relationships we studied, our results suggest caution in interpreting predator–prey abundance patterns among other species as strong evidence for top‐down control.  相似文献   

20.
Predator‐prey theory predicts that in the presence of multiple types of predators using a common prey, predator facilitation may result as a consequence of contrasting prey defense mechanisms, where reducing the risk from one predator increases the risk from the other. While predator facilitation is well established in natural predator‐prey systems, little attention has been paid to situations where human hunters compete with natural predators for the same prey. Here, we investigate hunting‐mediated predator facilitation in a hunter‐predator‐prey system. We found that hunter avoidance by roe deer (Capreolus capreolus) exposed them to increase predation risk by Eurasian lynx (Lynx lynx). Lynx responded by increasing their activity and predation on deer, providing evidence that superadditive hunting mortality may be occurring through predator facilitation. Our results reveal a new pathway through which human hunters, in their role as top predators, may affect species interactions at lower trophic levels and thus drive ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号