首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of passive changes of lung volume on upper airways   总被引:5,自引:0,他引:5  
The total upper airway resistances are modified during active changes in lung volume. We studied nine normal subjects to assess the influence of passive thoracopulmonary inflation and deflation on nasal and pharyngeal resistances. With the subjects lying in an iron lung, lung volumes were changed by application of an extrathoracic pressure (Pet) from 0 to 20 (+Pet) or -20 cmH2O (-Pet) in 5-cmH2O steps. Upper airway pressures were measured with two low-bias flow catheters, one at the tip of the epiglottis and the other in the posterior nasopharynx. Breath-by-breath resistance measurements were made at an inspiratory flow rate of 300 ml/s at each Pet step. Total upper airway, nasal, and pharyngeal resistances increased with +Pet [i.e., nasal resistance = 139.6 +/- 14.4% (SE) of base-line and pharyngeal resistances = 189.7 +/- 21.1% at 10 cmH2O of +Pet]. During -Pet there were no significant changes in nasal resistance, whereas pharyngeal resistance decreased significantly (pharyngeal resistance = 73.4 +/- 7.4% at -10 cmH2O). We conclude that upper airway resistance, particularly the pharyngeal resistance, is influenced by passive changes in lung volumes, especially pulmonary deflation.  相似文献   

2.
We examined the effect of electrical stimulation of the hypoglossal nerve and pharyngeal lubrication with artificial surfactant (Surfactant T-A) on the opening of obstructed upper airway in nine anesthetized supine dogs. The upper airway was isolated from the lower airway by transecting the cervical trachea. Upper airway obstruction was induced by applying constant negative pressures (5, 10, 20, and 30 cmH2O) on the rostral cut end of the trachea. Peripheral cut ends of the hypoglossal nerves were electrically stimulated by square-wave pulses at various frequencies from 10 to 30 Hz (0.2-ms duration, 5-7 V), and the critical stimulating frequency necessary for opening the obstructed upper airway was measured at each driving pressure before and after pharyngeal lubrication with artificial surfactant. The critical stimulation frequency for upper airway opening significantly increased as upper airway pressure became more negative and significantly decreased with lubrication of the upper airway. These findings suggest that greater muscle tone of the genioglossus is needed to open the occluded upper airway with larger negative intraluminal pressure and that lubrication of the pharyngeal mucosa with artificial surfactant facilitates reopening of the upper airway.  相似文献   

3.
The influence of pulmonary inflation and positive airway pressure on nasal and pharyngeal resistance were studied in 10 normal subjects lying in an iron lung. Upper airway pressures were measured with two low-bias flow catheters while the subjects breathed by the nose through a Fleish no. 3 pneumotachograph into a spirometer. Resistances were calculated at isoflow rates in four different conditions: exclusive pulmonary inflation, achieved by applying a negative extra-thoracic pressure (NEP); expiratory positive airway pressure (EPAP), which was created by immersion of the expiratory line; continuous positive airway pressure (CPAP), realized by loading the bell of the spirometer; and CPAP without pulmonary inflation by simultaneously applying the same positive extrathoracic pressure (CPAP + PEP). Resistance measurements were obtained at 5- and 10-cmH2O pressure levels. Pharyngeal resistance (Rph) significantly decreased during each measurement; the decreases in nasal resistance were only significant with CPAP and CPAP + PEP; the deepest fall in Rph occurred with CPAP. It reached 70.8 +/- 5.5 and 54.8 +/- 6.5% (SE) of base-line values at 5 and 10 cmH2O, respectively. The changes in lung volume recorded with CPAP + PEP ranged from -180 to 120 ml at 5 cmH2O and from -240 to 120 ml at 10 cmH2O. Resistances tended to increase with CPAP + PEP compared with CPAP values, but these changes were not significant (Rph = 75.9 +/- 6.1 and 59.9 +/- 6.6% at 5 and 10 cmH2O of CPAP + PEP). We conclude that 1) the upper airway patency increases during pulmonary inflation, 2) the main effect of CPAP is related to pneumatic splinting, and 3) pulmonary inflation contributes little to the decrease in upper airways resistance observed with CPAP.  相似文献   

4.
The most collapsible part of the upper airway in the majority of individuals is the velopharynx which is the segment positioned behind the soft palate. As such it is an important morphological region for consideration in elucidating the pathogenesis of obstructive sleep apnea (OSA). This study compared steady flow properties during inspiration in the pharynges of nine male subjects with OSA and nine body-mass index (BMI)- and age-matched control male subjects without OSA. The k  –ωωSST turbulence model was used to simulate the flow field in subject-specific pharyngeal geometric models reconstructed from anatomical optical coherence tomography (aOCT) data. While analysis of the geometry of reconstructed pharynges revealed narrowing at velopharyngeal level in subjects with OSA, it was not possible to clearly distinguish them from subjects without OSA on the basis of pharyngeal size and shape alone. By contrast, flow simulations demonstrated that pressure fields within the narrowed airway segments were sensitive to small differences in geometry and could lead to significantly different intraluminal pressure characteristics between subjects. The ratio between velopharyngeal and total pharyngeal pressure drops emerged as a relevant flow-based criterion by which subjects with OSA could be differentiated from those without.  相似文献   

5.
Artificially produced upper airway suction inhibits the diaphragm in animals and infants; however, the effects of spontaneously generated suction in humans are unknown. We studied nine tracheostomized infants because separation of the upper from the lower airway allowed us to channel suction created by an occluded inspiratory effort to both upper and lower airways (upper + lower airway occlusions) or to the lower airway only (lower airway occlusion). The tracheostomy airway was briefly occluded at end expiration during quiet sleep. In upper + lower airway occlusions, peak airway pressure of the first occluded breath was less negative and rate of pressure decrease slower than that of lower airway occlusions, indicating that upper airway suction inhibits thoracic inspiratory muscles. The threshold for this response was less than or equal to 4 cmH2O suction pressure. The effect on inspiratory time was variable. A decrease in slope of the inspiratory pressure waveform occurring at approximately 0.12 s after inspiration onset was more marked in upper + lower airway occlusions. We conclude that infants have an upper airway reflex response to inspiratory pressure that alters not only the peak and slope but also the shape of the inspiratory pressure waveform.  相似文献   

6.
Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm(2)/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm(2)/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm(2)/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse.  相似文献   

7.
We compared the changes in nasal and pharyngeal resistance induced by modifications in the central respiratory drive in 8 patients with sleep apnea syndrome (SAS) with the results of 10 normal men. Upper airway pressures were measured with two low-bias flow catheters; one was placed at the tip of the epiglottis and the other above the uvula. Nasal and pharyngeal resistances were calculated at isoflow. During CO2 rebreathing and during the 2 min after maximal voluntary hyperventilation, we continuously recorded upper airway pressures, airflow, end-tidal CO2, and the mean inspiratory flow (VT/TI); inspiratory pressure generated at 0.1 s after the onset of inspiration (P0.1) was measured every 15-20 s. In both groups upper airway resistance decreased as P0.1 increased during CO2 rebreathing. When P0.1 increased by 500%, pharyngeal resistance decreased to 17.8 +/- 3.1% of base-line values in SAS patients and to 34.9 +/- 3.4% in normal subjects (mean +/- SE). During the posthyperventilation period the VT/TI fell below the base-line level in seven SAS patients and in seven normal subjects. The decrease in VT/TI was accompanied by an increase in upper airway resistance. When the VT/TI decreased by 30% of its base-line level, pharyngeal resistance increased to 319.1 +/- 50.9% in SAS and 138.5 +/- 4.7% in normal subjects (P less than 0.05). We conclude that 1) in SAS patients, as in normal subjects, the activation of upper airway dilators is reflected by indexes that quantify the central inspiratory drive and 2) the pharyngeal patency is more sensitive to the decrease of the central respiratory drive in SAS patients than in normal subjects.  相似文献   

8.
Negative upper airway (UAW) pressure inhibits diaphragm inspiratory activity in animals, but there is no direct evidence of this reflex in humans. Also, little is known regarding reflex latency or effects of varying time of stimulation during the breathing cycle. We studied effects of UAW negative pressure on inspiratory airflow and respiratory timing in seven tracheostomized infants during quiet sleep with a face mask and syringe used to produce UAW suction without changing lower airway pressure. Suction trials lasted 2-3 s. During UAW suction, mean and peak inspiratory airflow as well as tidal volume was markedly reduced (16-68%) regardless of whether stimulation occurred in inspiration or expiration. Reflex latency was 42 +/- 3 ms. When suction was applied during inspiration or late expiration, the inspiration and the following expiration were shortened. In contrast, suction applied during midexpiration prolonged expiration and tended to prolong inspiration. The changes in flow, tidal volume, and timing indicate a marked inhibitory effect of UAW suction on thoracic inspiratory muscles. Such a reflex mechanism may function in preventing pharyngeal collapse by inspiratory suction pressure.  相似文献   

9.
Computational fluid dynamic (CFD) analysis was used to model the effect of airway geometry on internal pressure in the upper airway of three children with obstructive sleep apnea syndrome (OSAS), and three controls. Model geometry was reconstructed from magnetic resonance images obtained during quiet tidal breathing, meshed with an unstructured grid, and solved at normative peak resting flow. The unsteady Reynolds-averaged Navier-Stokes equations were solved with steady flow boundary conditions in inspiration and expiration, using a two-equation low-Reynolds number turbulence model. Model results were validated using an in-vitro scale model, unsteady flow simulation, and reported nasal resistance measurements in children. Pharynx pressure drop strongly correlated to airway area restriction. Inspiratory pressure drop was primarily proportional to the square of flow, consistent with pressure losses due to convective acceleration caused by area restriction. On inspiration, in OSAS pressure drop occurred primarily between the choanae and the region where the adenoids overlap the tonsils (overlap region) due to airway narrowing, rather than in the nasal passages; in controls the majority of pressure drop was in the nasal passages. On expiration, in OSAS the majority of pressure drop occurred between the oropharynx (posterior to the tongue) and overlap region, and local minimum pressure in the overlap region was near atmospheric due to pressure recovery in the anterior nasopharynx. The results suggest that pharyngeal airway shape in children with OSAS significantly affects internal pressure distribution compared to nasal resistance. The model may also help explain regional dynamic airway narrowing during expiration.  相似文献   

10.
Closure of the jaw exerts traction on muscles that insert on the hyoid bone and that may stabilize or expand the pharyngeal airway. We postulated that the masseter muscles, which close the jaw, would be activated when the patency of the pharyngeal airway is threatened. We therefore measured electromyographic activation of the masseters during inspiratory resistance loading and compared it with activation of chin muscles and alae nasi in 10 normal subjects. We observed no masseter activation during quiet unloaded breathing, but as pharyngeal pressure became lower there was a significant increase in masseter activation in all subjects. The change in masseter activation relative to pharyngeal pressure was similar to that of chin muscles and alae nasi. Activation of the masseter preceded the fall in pharyngeal pressure as also occurred in the chin muscles and alae nasi. We conclude that the masseters are activated by inspiratory resistance loading and have respiratory activity similar to pharyngeal airway muscles.  相似文献   

11.
The mechanicaleffects of pharyngeal constrictor (PC) muscle activation on pharyngealairway function were determined in 20 decerebrate, tracheotomized cats.In 10 cats, a high-compliance balloon attached to a pressure transducerwas partially inflated to just occlude the pharyngeal airway. Duringprogressive hyperoxic hypercapnia, changes in pharyngeal balloonpressure were directly related to phasic expiratory hyopharyngeus(middle PC) activity. In two separate protocols in 10 additional cats,the following measurements were obtained with and without bilateralelectrical stimulation (0.2-ms duration, threshold voltage) of thedistal cut end of the vagus nerve's pharyngeal branch supplying PCmotor output: 1) pressure-volumerelationships in an isolated, sealed upper airway at a stimulationfrequency of 30 Hz and 2) rostrally directed axial force over a stimulation frequency range of 0-40 Hz. Airway compliance determined from the pressure-volume relationships decreased with PC stimulation at and below resting airway volume. Compared with the unstimulated condition, PC stimulation increased airway pressure at airway volumes at and above resting volume. Thisconstrictor effect progressively diminished as airway volume wasbrought below resting volume. At relatively low airway volumes belowresting volume, PC stimulation decreased airway pressure compared withthat without stimulation. PC stimulation generated a rostrally directedaxial force that was directly related to stimulation frequency. Theresults indicate that PC activation stiffens the pharyngeal airway,exerting both radial and axial effects. The radial effects aredependent on airway volume: constriction of the airway at relativelyhigh airway volumes, and dilation of the airway at relatively lowairway volumes. The results imply that, under certain conditions, PCmuscle activation may promote pharyngeal airway patency.

  相似文献   

12.
Obstructive sleep apnea is the result of repeated episodes of upper airway obstruction during sleep. Recent evidence indicates that alterations in upper airway anatomy and disturbances in neuromuscular control both play a role in the pathogenesis of obstructive sleep apnea. We hypothesized that subjects without sleep apnea are more capable of mounting vigorous neuromuscular responses to upper airway obstruction than subjects with sleep apnea. To address this hypothesis we lowered nasal pressure to induce upper airway obstruction to the verge of periodic obstructive hypopneas (cycling threshold). Ten patients with obstructive sleep apnea and nine weight-, age-, and sex-matched controls were studied during sleep. Responses in genioglossal electromyography (EMG(GG)) activity (tonic, peak phasic, and phasic EMG(GG)), maximal inspiratory airflow (V(I)max), and pharyngeal transmural pressure (P(TM)) were assessed during similar degrees of sustained conditions of upper airway obstruction and compared with those obtained at a similar nasal pressure under transient conditions. Control compared with sleep apnea subjects demonstrated greater EMG(GG), V(I)max, and P(TM) responses at comparable levels of mechanical and ventilatory stimuli at the cycling threshold, during sustained compared with transient periods of upper airway obstruction. Furthermore, the increases in EMG(GG) activity in control compared with sleep apnea subjects were observed in the tonic but not the phasic component of the EMG response. We conclude that sustained periods of upper airway obstruction induce greater increases in tonic EMG(GG), V(I)max, and P(TM) in control subjects. Our findings suggest that neuromuscular responses protect individuals without sleep apnea from developing upper airway obstruction during sleep.  相似文献   

13.
There are several studies showing that patients with idiopathic obstructive sleep apnea (OSA) have a narrow and collapsible pharynx that may predispose them to repeated upper airway occlusions during sleep. We hypothesized that this structural abnormality may also extend to the glottic and tracheal region. Consequently, we measured pharyngeal (Aph), glottic (Agl), cervical tracheal (Atr1), midtracheal (Atr2), and distal (Atr3) tracheal areas during tidal breathing in 66 patients with OSA (16 nonobese and 50 obese) and 8 nonapneic controls. We found that Aph, Agl, and Atr1, but not Atr2 or Atr3, were significantly smaller in the OSA group than in the control group. Obese patients with OSA had the smallest upper airway area, although the nonapneic controls had the largest areas. Multiple linear regression analysis revealed that the pharyngeal area, cervical tracheal area, and body mass index were all independent determinants of the apnea-hypopnea index, accounting for 31% of the variability in apnea-hypopnea index. Aph, Agl, and Atr showed significant correlation with the body mass index. We conclude that sleep-disordered breathing is associated with diffuse upper airway narrowing and that obesity contributes to this narrowing. Furthermore, we speculate that a common pathophysiological mechanism may be responsible for this reduction in upper airway area extending from the pharynx to the proximal trachea.  相似文献   

14.
Obstructive sleep apnea is caused by pharyngeal occlusion due to alterations in upper airway mechanical properties and/or disturbances in neuromuscular control. The objective of the study was to determine the relative contribution of mechanical loads and dynamic neuromuscular responses to pharyngeal collapse during sleep. Sixteen obstructive sleep apnea patients and sixteen normal subjects were matched on age, sex, and body mass index. Pharyngeal collapsibility, defined by the critical pressure, was measured during sleep. The critical pressure was partitioned between its passive mechanical properties (passive critical pressure) and active dynamic responses to upper airway obstruction (active critical pressure). Compared with normal subjects, sleep apnea patients demonstrated elevated mechanical loads as demonstrated by higher passive critical pressures [-0.05 (SD 2.4) vs. -4.5 cmH2O (SD 3.0), P = 0.0003]. Dynamic responses were depressed in sleep apnea patients, as suggested by failure to lower their active critical pressures [-1.6 (SD 3.5) vs. -11.1 cmH2O (SD 5.3), P < 0.0001] in response to upper airway obstruction. Moreover, elevated mechanical loads placed some normal individuals at risk for sleep apnea. In this subset, dynamic responses to upper airway obstruction compensated for mechanical loads and maintained airway patency by lowering the active critical pressure. The present study suggests that increased mechanical loads and blunted neuromuscular responses are both required for the development of obstructive sleep apnea.  相似文献   

15.
Complex relationships exist among electromyograms (EMGs) of the upper airway muscles, respective changes in muscle length, and upper airway volume. To test the effects of preventing lung inflation on these relationships, recordings were made of EMGs and length changes of the geniohyoid (GH) and sternohyoid (SH) muscles as well as of tidal changes in upper airway volume in eight anesthetized cats. During resting breathing, tracheal airway occlusion tended to increase the inspiratory lengthening of GH and SH. In response to progressive hypercapnia, the GH eventually shortened during inspiration in all animals; the extent of muscle shortening was minimally augmented by airway occlusion despite substantial increases in EMGs. SH lengthened during inspiration in six of eight animals under hypercapnic conditions, and in these cats lengthening was greater during airway occlusion even though EMGs increased. Despite the above effects on SH and GH length, upper airway tidal volume was increased significantly by tracheal occlusion under hypercapnic conditions. These data suggest that the thoracic and upper airway muscle reflex effects of preventing lung inflation during inspiration act antagonistically on hyoid muscle length, but, because of the mechanical arrangement of the hyoid muscles relative to the airway and thorax, they act agonistically to augment tidal changes in upper airway volume. The augmentation of upper airway tidal volume may occur in part as a result of the effects of thoracic movements being passively transmitted through the hyoid muscles.  相似文献   

16.
A current hypothesis for obstructive sleep apnea states that 1) negative airway pressure during inspiration can collapse the pharyngeal airway, and 2) neural control of pharyngeal airway-dilating muscles is important in preventing this collapse. To test this hypothesis we performed nasal mask occlusions to increase negative pharyngeal airway pressures during inspiration in eight normal and five micrognathic infants. Both groups developed midinspiratory pharyngeal obstruction, but obstruction was more frequent in micrognathic infants and varied in some infants with sleep state. The airway usually reopened with the subsequent expiration. The occasional failure to reopen was presumably due to pharyngeal wall adhesion. If airway obstruction occurred in sequential breaths during multiple-breath nasal mask occlusions in normal infants, there was a breath-by-breath change in the airway pressure associated with airway closure (airway closing pressure); the airway closing pressure became progressively more negative. Micrognathic infants showed less ability to improve the airway closing pressure, but this ability increased with age. These findings suggest that nasal mask occlusion can test the competence of the neuromuscular mechanisms that maintain pharyngeal airway patency in infants. Micrognathic infants had spontaneous midinspiratory pharyngeal airway obstructions during snoring. Their episodes of obstructive apnea began with midinspiratory pharyngeal obstruction similar to that seen during snoring and nasal mask occlusions. These findings imply a similar pathophysiology for snoring, spontaneous airway obstruction, and obstruction during snoring.  相似文献   

17.
Transmural pressure at any level in the upper airway is dependent on the difference between intraluminal airway and extraluminal tissue pressure (ETP). We hypothesized that ETP would be influenced by topography, head and neck position, resistive loading, and stimulated breathing. Twenty-eight male, New Zealand White, anesthetized, spontaneously breathing rabbits breathed via a face mask with attached pneumotachograph to measure airflow and pressure transducer to monitor mask pressure. Tidal volume was measured via integration of the airflow signal. ETP was measured with a pressure transducer-tipped catheter inserted in the tissues of the lateral (ETPlat, n = 28) and anterior (ETPant, n = 21) pharyngeal wall. Head position was controlled at 30, 50, or 70 degrees, and the effect of addition of an external resistor, brief occlusion, or stimulated breathing was examined. Mean ETPlat was approximately 0.7 cmH2O greater than mean ETPant when adjusted for degree of head and neck flexion (P < 0.05). Mean, maximum, and minimum ETP values increased significantly by 0.7-0.8 cmH2O/20 degrees of head and neck flexion when adjusted for site of measurement (P < 0.0001). The main effect of resistive loading and occlusion was an increase in the change in ETPlat (maximum - minimum ETPlat) and change in ETPant at all head and neck positions (P < 0.05). Mean ETPlat and ETPant increased with increasing tidal volume at head and neck position of 30 degrees (all P < 0.05). In conclusion, ETP was nonhomogeneously distributed around the upper airway and increased with both increasing head and neck flexion and increasing tidal volume. Brief airway occlusion increased the size of respiratory-related ETP fluctuations in upper airway ETP.  相似文献   

18.
Lung volume dependence of pharyngeal airway patency suggests involvement of lung volume in pathogenesis of obstructive sleep apnea. We examined the structural interaction between passive pharyngeal airway and lung volume independent of neuromuscular factors. Static mechanical properties of the passive pharynx were compared before and during lung inflation in eight anesthetized and paralyzed patients with sleep-disordered breathing. The respiratory system volume was increased by applying negative extrathoracic pressure, thereby leaving the transpharyngeal pressure unchanged. Application of -50-cmH(2)O negative extrathoracic pressure produced an increase in lung volume of 0.72 (0.63-0.91) liter [median (25-75 percentile)], resulting in a significant reduction of velopharyngeal closing pressure of 1.22 (0.14-2.03) cmH(2)O without significantly changing collapsibility of the oropharyngeal airway. Improvement of the velopharyngeal closing pressure was directly associated with body mass index. We conclude that increase in lung volume structurally improves velopharyngeal collapsibility particularly in obese patients with sleep-disordered breathing.  相似文献   

19.
Effects of upper airway anesthesia on pharyngeal patency during sleep   总被引:2,自引:0,他引:2  
Pharyngeal patency depends, in part, on the tone and inspiratory activation of pharyngeal dilator muscles. To evaluate the influence of upper airway sensory feedback on pharyngeal muscle tone and thus pharyngeal patency, we measured pharyngeal airflow resistance and breathing pattern in 15 normal, supine subjects before and after topical lidocaine anesthesia of the pharynx and glottis. Studies were conducted during sleep and during quiet, relaxed wakefulness before sleep onset. Maximal flow-volume loops were also measured before and after anesthesia. During sleep, pharyngeal resistance at peak inspiratory flow increased by 63% after topical anesthesia (P less than 0.01). Resistance during expiration increased by 40% (P less than 0.01). Similar changes were observed during quiet wakefulness. However, upper airway anesthesia did not affect breathing pattern during sleep and did not alter awake flow-volume loops. These results indicate that pharyngeal patency during sleep is compromised when the upper airway is anesthetized and suggest that upper airway reflexes, which promote pharyngeal patency, exist in humans.  相似文献   

20.
Breathing is a complex act requiring the coordinated activity of multiple groups of muscles. Thoracic and abdominal respiratory muscles expand and contract the lungs, whereas pharyngeal and laryngeal respiratory muscles maintain upper airway patency and regulate upper airway resistance. An appreciation of the importance of the latter muscle group in maintaining ventilatory homeostasis and in the pathophysiology of sleep apnea has led to extensive studies examining the neural regulation of pharyngeal dilator muscles. The present review examines the role of heterogeneity in motoneuron and muscle properties in determining the diversity in the electrical and mechanical behaviors of thoracic compared with pharyngeal muscle groups. Specifically, phrenic and hypoglossal motoneuron electrophysiological properties influence whether and the extent to which these neurons will fire in response to a given synaptic input arising from chemo- and mechanoreceptors and from respiratory and nonrespiratory pattern generators. Furthermore, thoracic and pharyngeal muscle properties determine the mechanical response to motoneuronal activity, including the speed of contraction, relationships between motoneuron firing frequency and force production, and whether force is maintained during repetitive activation. Heterogeneity in the functional capabilities of these motoneurons and muscles is in turn determined by diversity of their structural and biochemical properties. Thus, intrinsic properties of respiratory motoneurons and muscles act in concert with neuronal drives in defining the complex electrical and mechanical behavior of pharyngeal and thoracic respiratory motor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号