首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用光能驱动二氧化碳(carbon dioxide, CO2)还原生产化学品对于缓解环境压力、解决能源危机具有重要意义。光捕获、光电转化和CO2固定等作为影响光合作用效率的关键因素,同时也制约着CO2的资源化利用效率。为了解决上述问题,本文从生物化学与代谢工程相结合的角度,系统总结了光驱动杂合系统的构建、优化与应用,并从酶杂合系统、生物杂合系统以及杂合系统应用3个方面分析了光驱动CO2还原合成化学品的最新研究进展。在酶杂合系统方面,采用的策略主要有提升酶催化活性、增强酶稳定性等;在生物杂合系统方面,采用的方法主要包括增强生物捕光能力、优化还原力供应以及改善能量再生等;在杂合系统应用方面,主要阐述了光驱动CO2还原生产一碳含能化合物、生物燃料以及生物食品等。最后,从纳米材料(包括有机材料和无机材料)和生物催化剂(包括酶和微生物)两个方面,展望了人工光合系统的进一步发展方向。  相似文献   

2.
The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation.  相似文献   

3.
Linear electron flow (LEF) and cyclic electron flow (CEF) compete for light-driven electrons transferred from the acceptor side of photosystem I (PSI). Under anoxic conditions, such highly reducing electrons also could be used for hydrogen (H2) production via electron transfer between ferredoxin and hydrogenase in the green alga Chlamydomonas reinhardtii. Partitioning between LEF and CEF is regulated through PROTON-GRADIENT REGULATION5 (PGR5). There is evidence that partitioning of electrons also could be mediated via PSI remodeling processes. This plasticity is linked to the dynamics of PSI-associated light-harvesting proteins (LHCAs) LHCA2 and LHCA9. These two unique light-harvesting proteins are distinct from all other LHCAs because they are loosely bound at the PSAL pole. Here, we investigated photosynthetic electron transfer and H2 production in single, double, and triple mutants deficient in PGR5, LHCA2, and LHCA9. Our data indicate that lhca2 and lhca9 mutants are efficient in photosynthetic electron transfer, that LHCA2 impacts the pgr5 phenotype, and that pgr5/lhca2 is a potent H2 photo-producer. In addition, pgr5/lhca2 and pgr5/lhca9 mutants displayed substantially different H2 photo-production kinetics. This indicates that the absence of LHCA2 or LHCA9 impacts H2 photo-production independently, despite both being attached at the PSAL pole, pointing to distinct regulatory capacities.

Alteration of the light-harvesting composition of photosystem I impacts photosynthetic electron transfer and hydrogen production.  相似文献   

4.
A comparison has been made of the optimal concentrations of Mg2+ and K+ ions necessary for both light-driven protein synthesis in intact spinach chloroplasts and for ATP-driven protein synthesis in broken chloroplasts, and the products of the two systems have been compared by polyacrylamide gel electrophoresis. Light-driven incorporation of amino acids into polypeptides in intact chloroplasts assayed in buffer systems containing sucrose or sorbitol as the osmoticum is inhibited by the addition of Mg2+, the effect being most marked at low concentrations (less than 40 mm) of KCl. On the other hand, chloroplasts suspended in 0.2 m KCl as osmoticum require Mg2+ (3 mm) for optimal light-driven protein-synthesizing activity. Incorporation of amino acids by broken chloroplasts in the dark, supplemented with ATP and GTP, requires 9 mm Mg2+ for maximum activity. A requirement for monovalent cations is best filled by K+ (approx 30 mm) in the case of the light-driven, intact chloroplast system whereas, in the ATP-driven, broken chloroplast system, NH4+ (approx 80 mm) gave the highest activity.Autoradiographs of Na dodecyl sulfate-polyacrylamide gels of the products from both the light-driven, intact chloroplasts and from the ATP-driven, broken chloroplasts reveal qualitatively similar patterns. There are at least four radioactive polypeptides in the soluble protein fraction the dominant product being coincident with the large subunit of Fraction 1 protein. In the membrane fraction at least nine discrete products can be resolved.  相似文献   

5.
The imprudent use of fossil fuels has resulted in high greenhouse gas (GHG) emissions, leading to climate change and global warming. Reduction in GHG emissions and energy insecurity imposed by the depleting fossil fuel reserves led to the search for alternative sustainable fuels. Hydrogen is a potential alternative energy carrier and is of particular interest because hydrogen combustion releases only water. Hydrogen is also an important industrial feedstock. As an alternative energy carrier, hydrogen can be used in fuel cells for power generation. Current hydrogen production mainly relies on fossil fuels and is usually energy and CO2-emission intensive, thus the use of fossil fuel-derived hydrogen as a carbon-free fuel source is fallacious. Biohydrogen production can be achieved via microbial methods, and the use of microalgae for hydrogen production is outstanding due to the carbon mitigating effects and the utilization of solar energy as an energy source by microalgae. This review provides comprehensive information on the mechanisms of hydrogen production by microalgae and the enzymes involved. The major challenges in the commercialization of microalgae-based photobiological hydrogen production are critically analyzed and future research perspectives are discussed. Life cycle analysis and economic assessment of hydrogen production by microalgae are also presented.  相似文献   

6.
The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron‐hydrogenase is well known. However, the oxygen‐sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo‐production. Under illumination, sulfur‐deprivation has been shown to accommodate the production of hydrogen gas by partially‐deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur‐deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. Biotechnol. Bioeng. 2014;111: 320–335. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

7.
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.  相似文献   

8.
In view of the realization that fossil fuels reserves are limited, various options of generating energy are being explored. Biological methods for producing fuels such as ethanol, diesel, hydrogen (H2), methane, etc. have the potential to provide a sustainable energy system for the society. Biological H2 production appears to be the most promising as it is non-polluting and can be produced from water and biological wastes. The major limiting factors are low yields, lack of industrially robust organisms, and high cost of feed. Actually, H2 yields are lower than theoretically possible yields of 4 mol/mol of glucose because of the associated fermentation products such as lactic acid, propionic acid and ethanol. The efficiency of energy production can be improved by screening microbial diversity and easily fermentable feed materials. Biowastes can serve as feed for H2 production through a set of microbial consortia: (1) hydrolytic bacteria, (2) H2 producers (dark fermentative and photosynthetic). The efficiency of the bioconversion process may be enhanced further by the production of value added chemicals such as polydroxyalkanoate and anaerobic digestion. Discovery of enormous microbial diversity and sequencing of a wide range of organisms may enable us to realize genetic variability, identify organisms with natural ability to acquire and transmit genes. Such organisms can be exploited through genome shuffling for transgenic expression and efficient generation of clean fuel and other diverse biotechnological applications. JIMB 2008: BioEnergy-Special issue  相似文献   

9.
Reactive oxygen species (ROS) have pleiotropic effects in plants. ROS can lead to cellular damage and death or play key roles in control and regulation of biological processes, such as programmed cell death (PCD). This dual role of ROS, as toxic or signalling molecules, is possible because plant antioxidant system (AS) is able to achieve a tight control over ROS cellular levels, balancing properly their production and scavenging. AS response in plant PCD has been clearly described only in the hypersensitive response in incompatible plant–pathogen interactions and in the senescence process and has not been completely unravelled. In sycamore (Acer pseudoplatanus L.) cultured cells PCD can be induced by Fusicoccin (Fc), Tunicamycin (Tu), and Brefeldin A (Ba). These chemicals induce comparable PCD time course and extent, while H2O2 production is detectable only in Fc- and, to a lesser extent, in Ba-treated cells. In this paper the AS has been investigated during PCD of sycamore cells, measuring the effects of the three inducers on the cellular levels of non-enzymatic and enzymatic antioxidants. Results show that the AS behaviour is different in the PCD induced by the three chemicals. In Fc-treated cells AS is mainly devoted to decrease the concentration of toxic intracellular H2O2 levels. On the contrary, in cells treated with Tu and Ba, the cell redox state is shifted to a more reduced state and the enzymatic AS is partially down-regulated, allowing ROS to act as signalling molecules.  相似文献   

10.

Background

Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine ??-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H2) production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H2 production yield under light conditions.

Results

Recombinant E. coli BL21(DE3) co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H2 in the presence of exogenous retinal than in the absence of retinal under light conditions (70 ??mole photon/(m2·s)). We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H2 production (~1.3-fold more) with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 ??mole photon/(m2·s) led to an increase (~1.8-fold) in H2 production from 287.3 to 525.7 mL H2/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H2 achieved in this study was ~3.4%.

Conclusion

Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H2 production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3) in a light intensity-dependent manner. These results demonstrate that E. coli can be applied as light-powered cell factories for biohydrogen production by introducing proteorhodopsin.  相似文献   

11.
Five different mesophilic systems were evaluated in this study for the anaerobic treatment of food waste. Systems A and B were one stage methane with unsonicated and sonicated feeds, respectively, while, systems C and D were two-stage hydrogen and methane with unsonicated and sonicated feeds, respectively. System E comprised a novel sonicated biological hydrogen reactor (SBHR) followed by methane reactor. The results showed that sonication inside the reactor in the first stage (system E) showed superior results compared to all other systems. Overall VSS removal efficiencies of 67%, 59%, 51%, 44%, and 36% were achieved in systems E, D, C, B, and A, respectively. Volumetric hydrogen production rates of 4.8, 3.3, and 2.6 L H2/Lreactor d were achieved in the SBHR, CSTR with and without sonicated feed, respectively, while, methane production rates of 1.6, 2.1, 2.3, 2.6, and 3.2 L CH4/Lreactor d were achieved in systems A-E, respectively.  相似文献   

12.
Several unicellular and filamentous, nitrogen-fixing and non-nitrogen-fixing cyanobacterial strains have been investigated on the molecular and the physiological level in order to find the most efficient organisms for photobiological hydrogen production. These strains were screened for the presence or absence of hup and hox genes, and it was shown that they have different sets of genes involved in H2 evolution. The uptake hydrogenase was identified in all N2-fixing cyanobacteria, and some of these strains also contained the bidirectional hydrogenase, whereas the non-nitrogen fixing strains only possessed the bidirectional enzyme. In N2-fixing strains, hydrogen was mainly produced by the nitrogenase as a by-product during the reduction of atmospheric nitrogen to ammonia. Therefore, hydrogen production was investigated both under non-nitrogen-fixing conditions and under nitrogen limitation. It was shown that the hydrogen uptake activity is linked to the nitrogenase activity, whereas the hydrogen evolution activity of the bidirectional hydrogenase is not dependent or even related to diazotrophic growth conditions. With regard to large-scale hydrogen evolution by N2-fixing cyanobacteria, hydrogen uptake-deficient mutants have to be used because of their inability to re-oxidize the hydrogen produced by the nitrogenase. On the other hand, fermentative H2 production by the bidirectional hydrogenase should also be taken into account in further investigations of biological hydrogen production.Abbreviations Chl chlorophyll - MV methyl viologen  相似文献   

13.
Anaerobic sludges, pretreated by chloroform, base, acid, heat and loading-shock, as well as untreated sludge were evaluated for their thermophilic fermentative hydrogen-producing characters from cassava stillage in both batch and continuous experiments. Results showed that the highest hydrogen production was obtained by untreated sludge and there were significant differences (p < 0.05) in hydrogen yields (varied from 32.9 to 65.3 mlH2/gVS) among the tested pretreatment methods in batch experiments. However, the differences in hydrogen yields disappeared in continuous experiments, which indicated the pretreatment methods had only short-term effects on the hydrogen production. Further study showed that alkalinity was a crucial parameter influencing the fermentation process. When the influent was adjusted to pH 6 by NaHCO3 instead of NaOH, the hydrogen yield increased from about 40 to 52 mlH2/gVS in all the experiments. Therefore, pretreatment of anaerobic sludge is unnecessary for practical thermophilic fermentative hydrogen production from cassava stillage.  相似文献   

14.
Global biodiesel production is continuously increasing and it is proportionally accompanied by a huge amount of crude glycerol (CG) as by-product. Due to its crude nature, CG has very less commercial interest; although its pure counterpart has different industrial applications. Alternatively, CG is a very good carbon source and can be used as a feedstock for fermentative hydrogen production. Further, a move of this kind has dual benefits, namely it offers a sustainable method for disposal of biodiesel manufacturing waste as well as produces biofuels and contributes in greenhouse gas (GHG) reduction. Two-stage fermentation, comprising dark and photo-fermentation is one of the most promising options available for bio-hydrogen production. In the present study, techno-economic feasibility of such a two-stage process has been evaluated. The analysis has been made based on the recent advances in fermentative hydrogen production using CG as a feedstock. The study has been carried out with special reference to North American biodiesel market; and more specifically, data available for Canadian province, Québec City have been used. Based on our techno-economic analysis, higher production cost was found to be the major bottleneck in commercial production of fermentative hydrogen. However, certain achievable alternative options for reduction of process cost have been identified. Further, the process was found to be capable in reducing GHG emissions. Bioconversion of 1 kg of crude glycerol (70 % w/v) was found to reduce 7.66 kg CO2 eq (equivalent) GHG emission, and the process also offers additional environmental benefits.  相似文献   

15.
The phytotoxic effect of Cu via the photosynthetic electron transport system was studied with isolated spinach chloroplasts. Cu(II) ions induce a light-driven peroxidation of membrane lipids leading to ethylene formation, the latter dominating over a concurrent ethane production. Seemingly, the hydroxyl radical originating from superoxide anion is the starting reactive O2 species. Cu ions inhibit photosynthetic electron transport and apparently catalyze the formation of hydroxyl radical and Fenton-type reactions that result in destruction of unsaturated membrane fatty acids. The concept on the mode of action of Cu(II) and Cu(I) ions in lipid peroxidation as presented here suggests the influence of Cu on different reactions. Two sites are in the photosynthetic redox system; Cu participates in two Fenton-type reactions and in the conversion of ethyl radical to ethylene and ethane.  相似文献   

16.
The potential of hydrogen as a clean renewable fuel source and the finite reserves of platinum metal to be utilized in hydrogen production catalysts have provided the motivation for the development of non-noble metal-based solutions for catalytic hydrogen production. There are a number of microorganisms that possess highly efficient hydrogen production catalysts termed hydrogenases that generate hydrogen under certain metabolic conditions. Although hydrogenases occur in photosynthetic microorganisms, the oxygen sensitivity of these enzymes represents a significant barrier in directly coupling hydrogen production to oxygenic photosynthesis. To overcome this barrier, there has been considerable interest in identifying or engineering oxygen tolerant hydrogenases or generating mimetic systems that do not rely on oxygen producing photocatalysts. In this work, we demonstrate photo-induced hydrogen production from a stable [NiFe]-hydrogenase coupled to a [Ru(2,2'-bipyridine)2(5-amino-1,10-phenanthroline)]2+ photocatalyst. When the Ru(II) complex is covalently attached to the hydrogenase, photocatalytic hydrogen production occurs more efficiently in the presence of a redox mediator than if the Ru(II) complex is simply present in solution. Furthermore, sustained hydrogen production occurs even in the presence of oxygen by presumably creating a local anoxic environment through the reduction of oxygen similar to what is proposed for oxygen tolerant hydrogenases. These results provide a strong proof of concept for engineering photocatalytic hydrogen production in the presence of oxygen using biohybrid mimetic systems.  相似文献   

17.
Energy systems using renewables with adequate energy carriers are needed for sustainability. Before accelerating technology implementation for the transition to the new energy system, region‐specific implementation effects should be carefully examined as a system. In this study, we aim to analyze an energy system using hydrogen as an energy carrier with the approach of combining life cycle assessment and a regional energy simulation model. The model calculates the emissions, such as CO2, nitrogen oxides (NOx), sulfur oxides (SOx), and volatile organic compounds, and their impacts on human health, social assets, primary production, and an integrated index. The analysis quantitatively presented various environmental impacts by region, life cycle stage, and impact category. Climate change was dominant on the integrated index while the other impact categories were also important. Fuel cell vehicles were effective in mitigating local air pollution, especially in high‐population regions where many people are adversely affected. Although technology implementation contributes to mitigating environmental impacts at locations of energy users, it also has possibilities to have negative impacts at locations of device manufacturing and raw material processing. The definition of the regional division was also an important factor in energy system design because the final results of life cycle assessments are highly sensitive to region‐specific characteristics. The proposed region‐specific analysis is expected to support local governments and technology developers in designing appropriate energy systems for regions and building marketing plans for specific targets.  相似文献   

18.
An X-ray structure analysis of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis provides structural details of the pigment-binding sites. The photosynthetic pigments are found in rather hydrophobic environments provided by the subunits L and M. In addition to apolar interactions, the bacteriochlorophylls of the primary electron donor (`special pair') and the bacteriopheophytins, but not the accessory bacteriochlorophylls, form hydrogen bonds with amino acid side chains of these protein subunits. The two branches of pigments which originate at the primary electron donor, and which mark possible electron pathways across the photosynthetic membrane, are in different environments and show different hydrogen bonding with the protein: this may help to understand why only one branch of pigments is active in the light-driven electron transfer. The primary electron acceptor, a menaquinone (QA), is in a pocket formed by the M subunit and interacts with it by hydrophobic contacts and hydrogen bonds. Competitive inhibitors of the secondary quinone QB (o-phenanthroline, the herbicide terbutryn) are bound into a pocket provided by the L subunit. Apart from numerous van der Waals interactions they also form hydrogen bonds to the protein.  相似文献   

19.
Cyanobacterial hydrogen production   总被引:7,自引:0,他引:7  
With the global attention and research now being focussed on looking for an alternative to fossil fuel, hydrogen is the hope of future. Cyanobacteria are highly promising microorganisms for biological photohydrogen production. The review highlights the advancement in the biology of cyanobacterial hydrogen production in recent years. It discusses the enzymes involved in hydrogen production, viz. hydrogenases and nitrogenases, various strategies developed by cyanobacteria to limit nitrogenase inactivation by atmospheric and photosynthetic O2, different biochemical and physicochemical parameters influencing the commercial cyanobacterial hydrogen production and the methods opted by different researchers for eliminating them to obtain maximum and sustained hydrogen production. Integrating the existing knowledge, techniques and expertise available, much future improvement and progress can be made in the field. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
Peroxidases (POD) are used in textile decoloration and bleaching processes, but these enzymes are unfortunately inactivated rapidly at high hydrogen peroxide concentrations. A new concept has therefore been developed, which is based on a simultaneous application of glucose oxidase and peroxidase. Starting with glucose as a substrate for glucose oxidase (GOD), hydrogen peroxide was generated in situ. The freshly formed substrate H2O2 was immediately used by the POD oxidizing colored compounds in dyeing baths. For example, 20 mg of the dyestuff Sirius Supra Blue®FGG 200 % could be decolorized using 125 mg glucose which corresponds to 24 mg hydrogen peroxide. These experiments show that the enzyme cascade works in principle in homogeneous decoloration processes. The enzymes were not degraded by the oxidant, because under these conditions the stationary peroxide concentration is nearly zero over the whole reaction time. Moreover, experiments were carried out to check if this combined system with GOD, glucose and POD could be used even in heterogeneous systems such as the textile bleaching of natural cotton fibers. Starting from 55, a significant higher degree of whiteness (according to Berger) up to 66 could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号