首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1. 16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to alpha-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

2.
Alternate pathway for isoleucine biosynthesis in Escherichia coli   总被引:3,自引:2,他引:1       下载免费PDF全文
A threonine dehydrataseless mutant of Escherichia coli, Crookes strain, was observed to grow on an acetate minimal medium without the usual requirement for isoleucine supplementation. Both the wild-type Crookes strain and a threonine auxotroph metabolized l-glutamate-1-(14)C to l-isoleucine-1-(14)C with no appreciable randomization, suggesting that a pathway for isoleucine formation from glutamate via beta-methylaspartate, beta-methyloxaloacetate, and alpha-ketobutyrate was possible in addition to the pathway from threonine and alpha-ketobutyrate. Crude cell-free extracts formed (14)C-beta-methylaspartate from (14)C-glutamate, and the conversion of beta-methylaspartate to alpha-ketobutyrate was also demonstrated, thus supporting the conclusion that glutamate can serve as a precursor of alpha-ketobutyrate (and isoleucine) without the necessary involvement of threonine as an intermediate.  相似文献   

3.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

4.
The rat liver threonine deaminase is a cytoplasmic enzyme that catalyses the pyridoxal-phosphate-dependent dehydrative deamination of L-threonine and L-serine to ammonia and alpha-ketobutyrate and pyruvate, respectively, in vivo. During deamination, a molecule of the cofactor is converted to pyridoxamine phosphate. Recently, the ability of this enzyme to accomplish an inverse half-reaction, restoring pyridoxal-phosphate and L-alanine or L-aminobutyrate, respectively, from pyruvate or 2-oxobutyrate, was reported. In order to investigate the molecular mechanisms of this transaminating activity, a molecular model of rat liver threonine deaminase was constructed on the basis of sequence homology with the biosynthetic threonine deaminase of Escherichia coli, the crystal structure of which is known. The model has structural features shared by aminotransferases, suggesting that tertiary structural elements may be responsible for the transaminating activity observed for rat liver threonine deaminase.  相似文献   

5.
Challenging auxotrophs on metabolites that are precursors of a biosynthetic step involving a mutated enzyme has revealed a new class of suppressor mutations which act by derepressing a minor enzyme activity not normally detected in the wild-type strain. These indirect, partial suppressor mutations which allow isoleucine auxotrophs to grow on homoserine or threonine have been analyzed to determine their effect on enzymes involved in the biosynthesis of these amino acids. It has been found that one class of these suppressor mutations (sprA) leads to the derepression of homoserine kinase, homoserine dehydrogenase, and a minor threonine dehydratase that is not sufficiently active to be detected in the wild-type strain. The gene encoding this second threonine dehydratase activity has been found to be located between the structural genes for homoserine kinase and homoserine dehydrogenase. The results of these experiments indicate that plating of auxotrophs on precursors of a biosynthetic step involving mutated enzymes could prove to be a valuable method for the detection of regulatory mutants as well as a possible tool in studying the evolution of biochemical pathways.  相似文献   

6.
High-level expression of the regulatory enzyme threonine deaminase in Escherichia coli strains grown on minimal medium that are deficient in the activities of enzymes needed for branched-chain amino acid biosynthesis result in growth inhibition, possibly because of the accumulation of toxic levels of alpha-ketobutyrate, the product of the committed step in isoleucine biosynthesis. This condition affords a means for selecting genetic variants of threonine deaminase that are deficient in catalysis by suppression of growth inhibition. Strains harboring mutations in ilvA that decreased the catalytic activity of threonine deaminase were found to grow more rapidly than isogenic strains containing wild-type ilvA. Modification of the ilvA gene to introduce additional unique, evenly spaced restriction enzyme sites facilitated the identification of suppressor mutations by enabling small DNA fragments to be subcloned for sequencing. The 10 mutations identified in ilvA code for enzymes with significantly reduced activity relative to that of wild-type threonine deaminase. Values for their specific activities range from 40% of that displayed by wild-type enzyme to complete inactivation as evidenced by failure to complement an ilvA deletion strain to isoleucine prototrophy. Moreover, some mutant enzymes showed altered allosteric properties with respect to valine activation and isoleucine inhibition. The location of the 10 mutations in the 5' two-thirds of the ilvA gene is consistent with suggestions that threonine deaminase is organized functionally with an amino-terminal domain that is involved in catalysis and a carboxy-terminal domain that is important for regulation.  相似文献   

7.
Inhibition of Threonine Dehydratase Is Herbicidal   总被引:2,自引:0,他引:2       下载免费PDF全文
Threonine dehydratase, the first enzyme in isoleucine biosynthesis, catalyzes deamination and dehydration of threonine to produce 2-ketobutyrate and ammonia. An antimetabolite, 2-(1-cyclohexen-3(R)-yl)-S-glycine (CHG), inhibits the plant enzyme. CHG inhibits the growth of Black Mexican Sweet corn (Zea mays) cells and of Arabidopsis thaliana plants. The herbicidal effects of CHG can be reversed by 2-ketobutyrate, other intermediates of isoleucine biosynthesis, and by isoleucine itself. These results suggest that the herbicidal effects observed with CHG are a consequence of inhibition of threonine dehydratase. The enzyme could be a potential target site for an herbicide screening program.  相似文献   

8.
An isoleucine auxotroph of Salmonella typhimurium was derived from a merodiploid strain (containing the F-14 episome from Escherichia coli) that contained two copies of the structural genes concerned with isoleucine and valine biosynthesis. A haploid derivative, strain TU6001, having the same growth properties as the original merodiploid mutant was found to have normal biosynthetic enzymes and an altered isoleucyl-tRNA synthetase. The K m for isoleucine was increased by about 200-fold over that for the wild-type enzyme. All five enzymes in the isoleucine and valine biosynthetic pathway were derepressed relative to wild-type enzyme levels. A partial revertant of strain TU6001 was isolated which had properties that were intermediate between those of the mutant and the wild type (i.e., intermediate growth dependence on exogenous isoleucine, intermediate activity of isoleucyl-tRNA synthetase, and intermediate derepression of biosynthetic enzymes). The properties of strain TU6001 were demonstrated to be simultaneously transferable by transduction (using PLT22 H4 bacteriophage) of a single genetic locus, linked to pyr A, which has been designated ilv S. It is concluded that some function of the isoleucyl-tRNA synthetase is important in repression of the isoleucine and valine biosynthetic enzymes.Supported by grant GM 12522 from the National Institute of General Medical Sciences, U.S. Public Health Service. J. M. B. received a U.S. Public Health Service Postdoctoral Fellowship 1-F02-GM-30, 650-02.  相似文献   

9.
Threonine deaminase (l-threonine dehydratase EC 4.2.1.16) has been partially purified from a new extreme thermophilic bacterium, Thermus X-1, which is similar to T. aquaticus YT-1. The threonine deaminase of strain X-1 has a maximal rate of reaction at 85 to 90 C and is more thermostable than the threonine deaminase from mesophilic bacteria. The enzyme has an apparent molecular weight of 100,000 to 115,000, a K(m) for l-threonine of 14 mM, a pH optimum of 8.0, and like other threonine deaminases also catalyzes the deamination of serine. However the Thermus X-1 threonine deaminase does not show a strong feedback inhibition by isoleucine. It is suggested that the regulation of the biosynthesis of isoleucine in this extreme theromophile may resemble that reported in Rodospirillum rubrum.  相似文献   

10.
Biochemical and genetic analyses of the bacterium Salmonella typhimurium suggest that accumulation of alpha-ketobutyrate partially mediates the herbicidal activity of acetolactate synthase inhibitors. Growth inhibition of wild-type bacteria by the herbicide sulfometuron methyl was prevented by supplementing the medium with isoleucine, an allosteric inhibitor of threonine deaminase-catalyzed synthesis of alpha-ketobutyrate. In contrast, isoleucine did not rescue the growth of a mutant containing a threonine deaminase unresponsive to isoleucine. Moreover, the hypersensitivity of seven Tn10 insertion mutants to growth inhibition by sulfometuron methyl and alpha-ketobutyrate correlated with their inability to convert alpha-ketobutyrate to less noxious metabolites. We propose that alpha-ketobutyrate accumulation is an important component of sulfonylurea and imidazolinone herbicide action.  相似文献   

11.
Overproduction of isoleucine, an essential amino acid, was achieved by amplification of the gene encoding threonine dehydratase, the first enzyme in the threonine to isoleucine pathway, in a Corynebacterium lactofermentum threonine producer. Threonine overproduction was previously achieved with C. lactofermentum ATCC 21799, a lysine-hyperproducing strain, by introduction of plasmid pGC42 containing the Corynebacterium hom dr and thrB genes (encoding homoserine dehydrogenase and homoserine kinase respectively) under separate promoters. The pGC42 derivative, pGC77, also contains ilvA, which encodes threonine dehydratase. In a shake-flask fermentation, strain 21799(pGC77) produced 15 g/l isoleucine, along with small amounts of lysine and glycine. A molar carbon balance indicates that most of the carbon previously converted to threonine, lysine, glycine and isoleucine was incorporated into isoleucine by the new strain. Thus, in our system, simple overexpression of wild-type ilvA sufficed to overcome the effects of feedback inhibition of threonine dehydratase by the end-product, isoleucine.  相似文献   

12.
Among mutants which require isoleucine, but not valine, for growth, we have found two distinguishable classes. One is defective in the biosynthetic enzyme threonine deaminase (l-threonine hydro-lyase, deaminating, EC 4.2.1.16) and the other has an altered isoleucyl transfer ribonucleic acid (tRNA) synthetase [l-isoleucine: soluble RNA ligase (adenosine monophosphate), EC 6.1.1.5]. The mutation which affects ileS, the structural gene for isoleucyl-tRNA synthetase, is located between thr and pyrA at 0 min on the map of the Escherichia coli chromosome. This mutationally altered isoleucyl-tRNA synthetase has an apparent K(m) for isoleucine ( approximately 1 mm) 300-fold higher than that of the enzyme from wild type; on the other hand, the apparent V(max) is altered only slightly. When the mutationally altered ileS allele was introduced into a strain which overproduces isoleucine, the resulting strain could grow without addition of isoleucine. We conclude that the normal intracellular isoleucine level is not high enough to allow efficient charging to tRNA(Ile) by the mutant enzyme because of the K(m) defect. A consequence of the alteration in isoleucyl-tRNA synthetase was a fourfold derepression of the enzymes responsible for isoleucine biosynthesis. Thus, a functional isoleucyl-tRNA synthetase is needed for isoleucine to act as a regulator of its own biosynthesis.  相似文献   

13.
Synthesis of the biodegradative L-threonine dehydratase in Escherichia coli, Crookes strain, was prevented by dissolved oxygen concentrations of 6 micrometer or greater. This effect was shown to be exerted solely on synthesis, rather than being the result of enzyme inactivation in vivo. In addition to an anaerobic environment, maximum enzyme synthesis was dependent upon the presence of a complete complement of amino acids, with omission of L-threonine, L-valine, or L-leucine producing the largest decreases in enzyme formation. L-Threonine, the most essential of the amino acid requirements, could be partially replaced by DL-allothreonine or alpha-ketobutyrate. Half-maximal stimulation of enzyme synthesis occurred with 0.4 mM threonine in the medium. The roles of anaerobiosis and amino acids are interpreted as being in accord with the concept that threonine dehydratase functions in anaerobic energy production under conditions of amino acid sufficiency.  相似文献   

14.
Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves.  相似文献   

15.
The Saccharomyces cerevisiae ILV1 gene, encoding threonine dehydratase (EC 4.2.1.16) was fused to the transferred DNA nopaline synthase promoter and the 3' noncoding region of the octopine synthase gene. It was introduced, by Agrobacterium tumefaciens-mediated gene transfer, into an isoleucine-requiring Nicotiana plumbaginifolia auxotroph deficient in threonine dehydratase. Functional complementation by the ILV1 gene product was demonstrated by the selection of several transformed lines on a medium without isoleucine and by the identification in these lines of the yeast threonine dehydratase activity. This is the first example illustrating the complementation of a plant auxotroph by transfection with a cloned gene.  相似文献   

16.
InEuglena gracilis the growth inhibition by threonine was accompanied by a rapid accumulation of isoleucine in the cells. Among threonine-catabolizing enzymes only threonine dehydratase was detected in high activity inEuglena, and 2-oxobutyrate, the dehydratase products of threonine, also inhibited as did threonine. Threonine dehydratase was located in the cytosol, and its activity was not affected by isoleucine and related amino acids. 2-Oxobutyrate strongly inhibited the synthesis of valine from pyruvate while augmented the synthesis of isoleucine in mitochondria.  相似文献   

17.
Seventeen mutants of Pseudomonas putida that were unable to grow on threonine as nitrogen source owing to a lack of threonine dehydratase were isolated, and all were found to be unable to synthesize active urocanase. Spontaneous revertants selected for urocanase production concomitantly regained threonine dehydratase. Mutants that were unable to utilize urocanate as carbon source were also isolated, and these were defective in urocanase formation but were normal in threonine dehydratase levels. Since alpha-ketobutyrate is the prosthetic group for urocanase, these results are consistent with the proposal that threonine dehydratase is necessary for urocanase prosthetic group biosynthesis. However, the lack of urocanase activity in threonine dehydratase-negative mutants was shown not to be the result of reduced levels of endogenous free alpha-ketobutyrate, nor to the participation of threonine dehydratase in the initiation of urocanase biosynthesis through the conversion of threonyl-tRNA(Thr) to alpha-ketobutyryl-tRNA(Thr). Other alternatives for the participation of threonine dehydratase in urocanase biosynthesis are discussed.  相似文献   

18.
The regulation of the formation of isoleucine-valine biosynthetic enzymes was examined to elucidate the mechanism of isoleucine-valine accumulation by alpha-aminobutyric acid-resistant (abu-r) mutants of Serratia marcescens. In the isoleucine-valine auxotroph, l-threonine dehydratase, acetohydroxy acid synthetase, and transaminase B were repressed when isoleucine, valine, and leucine were simultaneously added to minimal medium. These enzymes were derepressed at the limitation of any single branched-chain amino acid. Pantothenate, which stimulated growth of this auxotroph, had no effect on the enzyme levels. It became evident from these results that in S. marcescens isoleucine-valine biosynthetic enzymes are subject to multivalent repression by three branched-chain amino acids. The abu-r mutants had high enzyme levels in minimal medium, with or without three branched-chain amino acids. Therefore, in abu-r mutants, isoleucine-valine biosynthetic enzymes are genetically derepressed. This derepression was considered to be the primary cause for valine accumulation and increased isoleucine accumulation.  相似文献   

19.
l-Threonine deaminase (l-threonine dehydratase [deaminating], EC 4.2.2.16) has been shown to be involved in the regulation of three of the enzymes of isoleucine-valine biosynthesis in yeast. Mutations affecting the affinity of the enzyme for isoleucine also affected the repression of acetohydroxyacid synthase, dihydroxyacid dehydrase, and reductoisomerase. The data indicate that isoleucine must be bound for effective repression of these enzymes to take place. In a strain with a nonsense mutation midway in liv 1, the gene for threonine deaminase, starvation for isoleucine or valine did not lead to derepression of the three enzymes; starvation for leucine did. The effect of the nonsense mutation is recessive; it is tentatively concluded, therefore, that intact threonine deaminase is required for derepression by two of the effectors for multivalent repression, but not by the third. A model is presented which proposes that a regulatory species of leu tRNA(leu) is the key intermediate for repression and that threonine deaminase is a positive element, regulating the available pool of charged leu tRNA by binding it.  相似文献   

20.
B Mckel  L Eggeling    H Sahm 《Journal of bacteriology》1992,174(24):8065-8072
Threonine dehydratase activity is an important element in the flux control of isoleucine biosynthesis. The enzyme of Corynebacterium glutamicum demonstrates a marked sigmoidal dependence of initial velocity on the threonine concentration, a dependence that is consistent with substrate-promoted conversion of the enzyme from a low-activity to a high-activity conformation. In the presence of the negative allosteric effector isoleucine, the K0.5 increased from 21 to 78 mM and the cooperativity, as expressed by the Hill coefficient increased from 2.4 to 3.7. Valine promoted opposite effects: the K0.5 was reduced to 12 mM, and the enzyme exhibited almost no cooperativity. Sequence determination of the C. glutamicum gene for this enzyme revealed an open reading frame coding for a polypeptide of 436 amino acids. From this information and the molecular weight determination of the native enzyme, it follows that the dehydratase is a tetramer with a total mass of 186,396 daltons. Comparison of the deduced polypeptide sequence with the sequences of known threonine dehydratases revealed surprising differences from the C. glutamicum enzyme in the carboxy-terminal portion. This portion is greatly reduced in size, and a large gap of 95 amino acids must be introduced to achieve homology. Therefore, the C. glutamicum enzyme must be considered a small variant of threonine dehydratase that is typically controlled by isoleucine and valine but has an altered structure reflecting a topological difference in the portion of the protein most likely to be important for allosteric regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号