首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We characterized the serotonin (5-hydroxytryptamine; 5-HT) receptor mediating cilia-driven rotational movement in embryos of the freshwater gastropod Physa elliptica. In addition, putative serotonin reuptake inhibitors (SSRIs), previously shown to induce other 5-HT-mediated processes in molluscs, were tested for their ability to induce rotation. As in previous studies with other freshwater gastropods, 5-HT induced a significant dose-dependent increase in rotation from 10(-6) to 10(-4) M. The 5-HT(1A) agonist 8-OH-DPAT produced a similar dose-dependent increase in rotation. However, the 5-HT(2) agonist alpha-CH3-serotonin evoked a significant rotational response only at the highest concentration of 10(-4) M. The 5-HT(2) receptor antagonist mianserin not only blocked 5-HT-induced rotation, it reduced rotation rate below that of baseline. However, two other antagonists, cyproheptadine (5-HT(2)) and propranolol (5-HT(1)), caused similar responses that consisted of an initial rotational surge followed by reduced rotation. Thus, these drugs appear to act as partial agonists. The putative SSRI fluvoxamine exhibited a significant dose-dependent increase in positive rotation as that seen with 5-HT. The SSRIs paroxetine and fluoxetine both caused an increase in rotation at 10(-6) and 10(-5) M but reduced rotation rate below that of baseline at 10(-4) M. These results agree with other studies on aquatic molluscs, suggest a 5-HT receptor with a mixed 5-HT(1)/5-HT(2) pharmacological profile and add to a now growing body of literature on the pharmacology of molluscan 5-HT receptors. In addition, all the tested putative SSRIs induced cilia-driven rotation in Physa embryos, indicating either the presence of 5-HT reuptake transporters or that these compounds act as 5-HT receptor ligands. J. Exp. Zool. 286:414-421, 2000.  相似文献   

2.
Summary

The zebra mussel, Dreissena polymorpha, is a freshwater biofouling bivalve unintentionally introduced in the 1980s into North America from Europe. Oocyte maturation (germinal vesicle breakdown, GVBD) and spawning of the zebra mussel can be triggered with serotonin (5-hydroxytryptamine, 5-HT). In pharmacological experiments to characterize the receptor mediating spawning, the serotonin receptor agonists 8-OH-DPAT, TFMPP, and 1-(1-naphthyl)piperazine were effective at stimulating spawning; whereas, 2-methylserotonin and alpha-methylserotonin had no effect. In experiments with antagonists of serotonin receptors ketanserin and propranolol had no effect; mianserin, NAN-190, and cyproheptadine had partial inhibitory effects; and methiothepin was a very effective antagonist. Metergoline had mixed agonist/antagonist properties. Ergotamine was the most effective activator of spawning in females. Compared to serotonergic receptors in other organisms, the receptors that activate spawning in zebra mussels resemble 5HTlym, 5HTdro2 and human 5HT1Dβ, which are receptors that may act both by inhibiting adenylyl cyclase and by activating phospholipase C. In zebra mussels, 5-HT and 8-OH-DPAT activate GVBD in gonad fragments, a process also initiated by manual dissection of gonad fragments. GVBD can be inhibited by pre-treatment of ovaries with forskolin and theophylline, suggesting an inhibitory role for cyclic AMP. The Ca2+ ionophore A23187 can trigger GVBD and polar body formation. Thus, oocyte maturation in zebra mussels may be initiated via serotonergic receptors simultaneously inhibiting adenylyl cyclase and activating Ca2+ mechanisms.  相似文献   

3.
Abstract. Eversion of the preputium is one of the initial steps in the male copulatory behavior of freshwater pulmonates. Previous experiments have shown that serotonergic mechanisms are involved in eversion in the snail Biomphalaria glabrata because the vertebrate 5-HT1 receptor antagonist methiothepin caused long-lasting eversion in a dose-dependent manner. In this study, we tested a variety of serotonergic receptor ligands, bioactive peptides, and selective serotonin reuptake inhibitors (SSRIs) for their ability to induce preputium eversion in B . glabrata in order to elucidate the physiological mechanism of eversion. Of 15 compounds tested, five significantly induced preputium eversion: the serotonin receptor antagonists methiothepin (1 and 10 μM; p<0.0001), cyproheptadine (1–10 μM; p<0.007–0.0001), and mianserin (5–50 μM; p<0.01–0.001), the molluscan cardioactive peptide FMRFamide (10 and 50 μM; p<0.0002–0.0001), and the SSRI fluoxetine (=Prozac, 10–100 μM; p<0.0003–0.0001). Serotonin itself neither induced eversion nor blocked methiothepin-induced eversion. This suggests that fluoxetine is not acting as an SSRI, but potentially as a receptor ligand. These preliminary data shed light on the possible physiological mechanism of preputium eversion in B . glabrata and suggest similarity with that of the model freshwater gastropod Lymnaea stagnalis .  相似文献   

4.
Systemic injection of kainic acid (KA), a powerful neuroexcitant and structural analogue of glutamate, induced a complex behaviour in the rat characterized by early “wet-dog-shakes” (WDS and delayed convulsions. 1) The WDS syndrome was antagonized by serotonin blockers (mianserin and cyproheptadine) and by GABAmimetic agents, which decrease serotonergic transmission; in contrast, WDS were potentiated by compounds which enhance serotonin-mediated events (fluoxetine, fenfluramine, imipramine and tranylcypromine) as well as by blockade of GABA receptors (bicuculline). In addition, WDS were antagonized by haloperidol (which possesses some anti-serotonin properties) whereas KA potentiated haloperidol-induced catalepsy, an effect which was blocked by cyproheptadine. This suggests that KA induces WDS and potentiates catalepsy via an increase in serotoninergic function. 2) KA induced convulsions were antagonized by GABAmimetic agents, in agreement with their broad anticonvulsant spectrum; in contrast, mianserine and cyproheptadine did not affect or even potentiated seizures. Thus KA seizures respond differently to pharmacological treatment than do WDS, and may me related to the nwuro-excitatory action of KA.  相似文献   

5.
Maternal use of selective serotonin (5-HT) reuptake inhibitors (SSRIs) is associated with an increased risk for persistent pulmonary hypertension of the newborn (PPHN), but little is known about 5-HT signaling in the developing lung. We hypothesize that 5-HT plays a key role in maintaining high pulmonary vascular resistance (PVR) in the fetus and that fetal exposure to SSRIs increases 5-HT activity and causes pulmonary hypertension. We studied the hemodynamic effects of 5-HT, 5-HT receptor antagonists, and SSRIs in chronically prepared fetal sheep. Brief infusions of 5-HT (3-20 μg) increased PVR in a dose-related fashion. Ketanserin, a 5-HT 2A receptor antagonist, caused pulmonary vasodilation and inhibited 5-HT-induced pulmonary vasoconstriction. In contrast, intrapulmonary infusions of GR127945 and SB206553, 5-HT 1B and 5-HT 2B receptor antagonists, respectively, had no effect on basal PVR or 5-HT-induced vasoconstriction. Pretreatment with fasudil, a Rho kinase inhibitor, blunted the effects of 5-HT infusion. Brief infusions of the SSRIs, sertraline and fluoxetine, caused potent and sustained elevations of PVR, which was sustained for over 60 min after the infusion. SSRI-induced pulmonary vasoconstriction was reversed by infusion of ketanserin and did not affect the acute vasodilator effects of acetylcholine. We conclude that 5-HT causes pulmonary vasoconstriction, contributes to maintenance of high PVR in the normal fetus through stimulation of 5-HT 2A receptors and Rho kinase activation, and mediates the hypertensive effects of SSRIs. We speculate that prolonged exposure to SSRIs can induce PPHN through direct effects on the fetal pulmonary circulation.  相似文献   

6.

Background

Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists.

Methods and Findings

The effects of three SSRIs (fluvoxamine, sertraline, paroxetine) and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), and dehydroepiandrosterone (DHEA)-sulfate) on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP3) receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine) and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38MAPK, c-Jun N-terminal kinase (JNK), and the Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways blocked the potentiation of NGF-induced neurite outgrowth by SA4503.

Conclusion

These findings suggest that stimulation of sigma-1 receptors and subsequent interaction with IP3 receptors, PLC-γ, PI3K, p38MAPK, JNK, and the Ras/Raf/MAPK signaling pathways are involved in the mechanisms of action of sigma-1 receptor agonists such as fluvoxamine and SA4503.  相似文献   

7.
8.
The association of serotonin with the alimentary canal of Locusta migratoria was investigated using immunohistochemistry and high performance liquid chromatography (HPLC) coupled to electrochemical detection. Serotonin-like immunoreactive processes were differentially distributed between and within three regions of the alimentary canal; the foregut, midgut and hindgut. The midgut possessed the most serotonin-like immunoreactive processes, while the hindgut contained only a few immunoreactive processes. Using HPLC coupled to electrochemical detection the serotonin content was highest in the midgut followed by the foregut and hindgut. The physiological response of the midgut to serotonin as well as to the combination of serotonin and proctolin was also examined. It was found that the application of serotonin to the midgut leads to a dose-dependent reduction in tonus of the circular muscles. Serotonin was also able to inhibit a proctolin-induced contraction of the midgut in a dose-dependent manner. The physiological and pharmacological properties of serotonin agonists and antagonists on the midgut were also investigated. The results indicate that alpha-methyl 5-HT was the most effective agonist leading to a 108% relaxation at 10(-9) M compared to that caused by the same serotonin concentration. Among several serotonin receptor antagonists tested, mianserin was the most potent. The application of mianserin at 10(-5) M in combination with 5x10(-6) M serotonin resulted in a 66% reduction of the serotonin-induced relaxation of midgut muscle. The serotonin antagonist cyproheptadine was less effective leading to a 39% reduction of the 5x10(-6) M serotonin-induced relaxation. Ketanserin was a weak antagonist.  相似文献   

9.
The degree of occupancy of the serotonin transporter (SERT) by selective serotonin reuptake inhibitors (SSRIs) appears to be critical in determining therapeutic response. To gain insight into the extent of occupancy required to alter serotonergic neurotransmission we used high-speed chronoamperometry to determine the extent of serotonergic destruction required to reduce the clearance of exogenously administered serotonin from extracellular fluid in the CA3 region of the hippocampus. Rats were pretreated with various doses of 5,7-dihydroxytryptamine to produce either a low, intermediate or high loss of SERTs. Clearance of 5-HT was reduced only in rats with > 90% loss of SERT. In these rats, there was also a trend for peak signal amplitudes to be greater. There was no significant difference in these parameters between the sham group and those with low or intermediate loss of SERTs. The SSRI, fluvoxamine, prolonged clearance of 5-HT in sham, low and intermediate groups, whereas there was no effect of fluvoxamine in those rats with > 90% loss of SERT. Functional loss of SERT activity occurs when destruction of serotonergic innervation is greater than 90% but serotonin clearance and efficacy of fluvoxamine is maintained with as few as one fifth of a full complement of SERTs.  相似文献   

10.
Metabolism and Pharmacokinetics of Selective Serotonin Reuptake Inhibitors   总被引:5,自引:0,他引:5  
1. Five drugs with the predominant pharmacologic effect of inhibiting the neuronal reuptake of serotonin are available worldwide for clinical use. This class of psychoactive drugs, known as selective serotonin reuptake inhibitors (SSRIs), is comprised of fluoxetine, sertraline, paroxetine, fluvoxamine, and citalopram.2. The SSRIs appear to share similar pharmacodynamic properties which translate to efficacy in the treatment of depression and anxiety syndromes. The drugs are differentiated by their pharmacokinetic properties with regard to stereochemistry, metabolism, inhibition of cytochrome enzymes, and participation in drug–drug interactions. Studies focusing on the relationship of plasma drug concentration to therapeutic and adverse effects have not confirmed the value of plasma concentration monitoring.3. This review summarizes the metabolism and relevant pharmacokinetic properties of the SSRIs.  相似文献   

11.
In zebra mussels (Dreissena polymorpha) simultaneous release of gametes and peaks in larval densities at particular locations suggest that spawning is triggered by synchronizing stimuli. Furthermore, spawning tends to occur only after an adequate environmental temperature is reached. To test the hypothesis that phytoplankton and gamete-associated chemicals initiate spawning in zebra mussels and that the responsiveness to such chemicals is affected by ambient temperature, the spawning response of zebra mussels to extracts from algae, a cryptomonad, and a cyanobacterium and to water associated with released gametes was assayed in animals acclimated to 12 ^C and 17 ^C. For animals held at 12 ^C, only serotonin, a known activator of bivalve spawning used as a positive control, stimulated spawning. However, for animals acclimated to 17 ^C, extracts made from a diatom (Phaeodactylum), a brown alga (Fucus), and a cryptomonad (Rhodomonas) stimulated spawning in both sexes; extracts from green algae (Platymonas and Dunaliella) and a cyanobacterium (Oscillatoria) did not cause spawning. Water associated with either released sperm or eggs elicited spawning in both females and males. Positive controls, stimulated with serotonin, spawned at a high (>90%) rate, whereas no negative control spawned. Thus, phytoplankton chemicals and gamete-associated factors may have a role in synchronizing spawning in zebra mussels once adequate ambient temperature is reached.  相似文献   

12.
Three new 2-(4-fluorophenoxy)-2-phenyl-ethyl piperazines, 1-(3-chlorophenyl)-4-[2-(4-fluorophenoxy)-2-phenylethyl]-piperazine 7, 1-[2-(4-fluorophenoxy)-2-phenylethyl]-4-(2-methoxyphenyl)-piperazine 8, and 1-[2-(4-fluorophenoxy)-2-phenylethyl]-4-(3-trifluoromethylphenyl)-piperazine 9, modeled after the potent antidepressant fluoxetine and coupled with several functionalized piperazines, have been prepared by chemical synthesis as selective serotonin reuptake inhibitors (SSRIs) with a potentially improved adverse reaction profile. Typical SSRIs, although very effective in the treatment of depression, still face the troublesome side effect of sexual dysfunction. A number of pharmacological agents-notably, drugs in the piperazine class-have been used to reverse SSRI-induced sexual dysfunction, and evidence for developing an improved SSRI by coupling a fluoxetine congener with the pharmacophore of a reversal agent holds promise. Preliminary data indicates that the hydrochloride (HCl) salts 10, 11, and 12 each exhibit single-site binding at the site of the serotonin reuptake transporter (SERT). However, each of the three compounds are much less potent than typical SSRIs, showing micromolar (microM) affinity for the SERT with IC(50) values of 1.45 microM, 3.27 microM, and 9.56 microM, respectively. Further biological evaluation of compounds 10, 11, and 12 is needed before definitive conclusions can be made with regard to each compound's potential for use as an SSRI-type candidate which is devoid of sexual side effects. Nevertheless, the initial findings are quite encouraging, thus lending credence to the idea of hybridizing an SSRI congener with that of the pharmacophore of an agent known to reverse or treat SSRI-induced sexual dysfunction.  相似文献   

13.
Administration of drugs such as fenfluramine, 20-40 mg/kg, and m-chlorophenylpiperazine (m-CPP), 2.5-5 mg/kg, which release serotonin or activate postsynaptic serotonin receptors, respectively, induced a dramatic decrease in the duodenal content of immunoreactive dynorphin (ir-DYN). The effect was antagonized by cyproheptadine, 1 mg/kg. Similarly, acute administration of the specific serotonin reuptake blockers fluvoxamine, 15 mg/kg, or femoxetine, 10 mg/kg, and 5-hydroxytryptophan (5-HTP), 40-160 mg/kg, evoked a marked decrease in the duodenal content of ir-DYN. A combined administration of fluvoxamine or femoxetine and 5-HTP failed to potentiate the effect of individual treatment. Only a higher dose of fenfluramine, 40 mg/kg, increased the ir-DYN content in the hypothalamus. These results suggest that the brain and gut ir-DYN is independently regulated by the serotonin system and that a serotonin mechanism might stimulate release of the gut dynorphin content.  相似文献   

14.
Five selective serotonin reuptake inhibitors (SSRIs) have been introduced recently: citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline. Although no therapeutic window has been defined for SSRIs, in contrast to tricyclic antidepressants, analytical methods for therapeutic drug monitoring of SSRIs are useful in several instances. SSRIs differ widely in their chemical structure and in their metabolism. The fact that some of them have N-demethylated metabolites, which are also SSRIs, requires that methods be available which allow therapeutic drug monitoring of the parent compounds and of these active metabolites. Most procedures are based on prepurification of the SSRIs by liquid-liquid extraction before they are submitted to separation by chromatographic procedures (high-performance liquid chromatography, gas chromatography, thin layer chromatography) and detection by various detectors (UV, fluorescence, electrochemical detector, nitrogen-phosphorus detector, mass spectrometry). This literature review shows that most methods allow quantitative determination of SSRIs in plasma, in the lower ng/ml range, and that they are, therefore, suitable for therapeutic drug monitoring purposes of this category of drugs.  相似文献   

15.
Summary

The zebra mussel (Dreissena polymorpha) has spread rapidly in temperate fresh waters of North America since its introduction into the Great Lakes in 1985 or 1986. It attaches to hard substrates, forming layers, occluding water intakes, encrusting and killing native mussels, filtering algae in competition with other planktivores, and possibly interfering with fish spawning. It reproduces prolifically, suggesting that an approach to its control may be by controlling its reproduction. Previous literature suggests that spawning in bivalves is regulated by both environmental and internal chemical cues. A suggested sequence is that phytoplankton chemicals initially trigger spawning; chemicals associated with gametes provide a species-specific pheromonal positive feedback for spawning; and the response to environmental chemicals is mediated internally by serotonin (5-HT). The role of 5-HT in zebra mussels is under investigation. Both males and females can be induced to spawn by either injection or external application of 5-HT. The response can also be activated by 8-hydroxy-2-(di-n-propylamino)-tetralin, an agonist at 5-HT1A receptors. HPLC analysis has detected 5-HT as the major biogenic amine in both male and female gonads. 5-HT immunocytochemistry demonstrates nerves containing serotonergic fibers innervating gonads of both males and females, with prominent varicosities surrounding the follicles in both sexes. A role of 5-HT in mediating spawning responses in zebra mussels is thus strongly supported. These studies have shown that reproductive behavior of zebra mussels can be modified by outside chemicals, a property that may be exploited for purposes of control.  相似文献   

16.
The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 (ED50 = 4 mg/kg, i.p.) was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation (r = 0.98, p less than 0.01) was obtained between the ED50 values of anorectic action and the ED50 values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced [3H]-mazindol from its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive (IC50 greater than 100 microM). Excluding zimelidine, a good correlation (r = 0.835, p less than 0.01) was obtained between the affinities of these drugs for [3H]-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with [3H]-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.  相似文献   

17.

Background

Women are at great risk for mood and anxiety disorders during their childbearing years and may become pregnant while taking antidepressant drugs. In the treatment of depression and anxiety disorders, selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed drugs, while it is largely unknown whether this medication affects the development of the central nervous system of the fetus. The possible effects are the product of placental transfer efficiency, time of administration and dose of the respective SSRI.

Methodology/Principal Findings

In order to attain this information we have setup a study in which these parameters were measured and the consequences in terms of physiology and behavior are mapped. The placental transfer of fluoxetine and fluvoxamine, two commonly used SSRIs, was similar between mouse and human, indicating that the fetal exposure of these SSRIs in mice is comparable with the human situation. Fluvoxamine displayed a relatively low placental transfer, while fluoxetine showed a relatively high placental transfer. Using clinical doses of fluoxetine the mortality of the offspring increased dramatically, whereas the mortality was unaffected after fluvoxamine exposure. The majority of the fluoxetine-exposed offspring died postnatally of severe heart failure caused by dilated cardiomyopathy. Molecular analysis of fluoxetine-exposed offspring showed long-term alterations in serotonin transporter levels in the raphe nucleus. Furthermore, prenatal fluoxetine exposure resulted in depressive- and anxiety-related behavior in adult mice. In contrast, fluvoxamine-exposed mice did not show alterations in behavior and serotonin transporter levels. Decreasing the dose of fluoxetine resulted in higher survival rates and less dramatic effects on the long-term behavior in the offspring.

Conclusions

These results indicate that prenatal fluoxetine exposure affects fetal development, resulting in cardiomyopathy and a higher vulnerability to affective disorders in a dose-dependent manner.  相似文献   

18.
The acinar salivary gland of the cockroach, Periplaneta americana, is innervated by dopaminergic and serotonergic nerve fibers. Stimulation of the glands by serotonin (5-hydroxytryptamine, 5-HT) results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, dopamine acts selectively on ion-transporting peripheral cells within the acini, and 5-HT acts on protein-producing central cells. We have investigated the pharmacology of the 5-HT-induced secretory activity of isolated salivary glands of P. americana by testing several 5-HT receptor agonists and antagonists. The effects of 5-HT can be mimicked by the non-selective 5-HT receptor agonist 5-methoxytryptamine. All tested agonists that display at least some receptor subtype specificity in mammals, i.e., 5-carboxamidotryptamine, (+/-)-8-OH-DPAT, (+/-)-DOI, and AS 19, were ineffective in stimulating salivary secretion. 5-HT-induced secretion can be blocked by the vertebrate 5-HT receptor antagonists methiothepin, cyproheptadine, and mianserin. Our pharmacological data indicate that the pharmacology of arthropod 5-HT receptors is remarkably different from that of their vertebrate counterparts.  相似文献   

19.
In human cerebral cortex slices noradrenaline, isoproterenol (a beta-adrenergic agonist), dopamine, apomorphine (a dopaminergic agonist), and serotonin stimulated cyclic AMP formation: noradrenaline greater than or equal to isoproterenol greater than dopamine = apomorphine = serotonin. Clonidine (and alpha-adrenergic agonist) was ineffective in stimulating cyclic AMP formation in temporal cortex slices. The stimulatory effect of noradrenaline and isoproterenol was blocked by propranolol (a beta-adrenergic blocker) but not by phentolamine (an alpha-adrenergic blocker). Pimozide (a selective dopaminergic antagonist) inhibited the increase of cyclic AMP formation induced by dopamine or apomorphine but not that induced by noradrenaline, isoproterenol, or serotonin. Neither propranolol or phentolamine had any effect on dopamine- or serotonin-stimulated cyclic AMP formation. Chlorpromazine blocked the increase of cyclic AMP formation induced by noradrenaline, dopamine or serotonin, while cyproheptadine, a putative central serotonergic antagonist, was ineffective. These observations suggest that there may be at least two monoamine-sensitive adenylate cyclases in human cerebral cortex which have the characteristics of a beta-adrenergic and a dopaminergic receptor, respectively, and also possibly a serotonergic receptor.  相似文献   

20.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号