首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the present study was to determine whether burn injury decreases myocardial protein synthesis and potential contributing mechanisms for this impairment. To address this aim, thermal injury was produced by a 40% total body surface area full-thickness scald burn in anesthetized rats, and the animals were studied 24 h late. Burn decreased the in vivo-determined rate of myocardial protein synthesis and translation efficiency by 25% but did not alter the protein synthetic rate in skeletal muscle. To identify potential mechanisms responsible for regulating mRNA translation in cardiac muscle, we examined several eukaryotic initiation factors (eIFs) and elongation factors (eEFs). Burn failed to alter eIF2B activity or the total amount or phosphorylation status of either eIF2 alpha or eIF2B epsilon in heart. In contrast, hearts from burned rats demonstrated 1) an increased binding of the translational repressor 4E-BP1 with eIF4E, 2) a decreased amount of eIF4E associated with eIF4G, and 3) a decreased amount of the hyperphosphorylated gamma-form of 4E-BP1. These changes in eIF4E availability were not seen in gastrocnemius muscle where burn injury did not decrease protein synthesis. Furthermore, constitutive phosphorylation of mTOR, S6K1, the ribosomal protein S6, and eIF4G were also decreased in hearts from burned rats. Burn did not appear to adversely affect elongation because there was no significant difference in the myocardial content of eEF1 alpha or eEF2 or the phosphorylation state of eEF2. The above-mentioned burn-induced changes in mRNA translation were associated with an impairment of in vitro myocardial performance. Finally, 24 h postburn, the cardiac mRNA content of IL-1 beta, IL-6, and high-mobility group protein B1 (but not TNF-alpha) was increased. In summary, these data suggest that thermal injury specifically decreases cardiac protein synthesis in part by decreasing mRNA translation efficiency resulting from an impairment in translation initiation associated with alterations in eIF4E availability and S6K1 activity.  相似文献   

2.
AMP-activated protein kinase (AMPK) is viewed as an energy sensor that acts to modulate glucose uptake and fatty acid oxidation in skeletal muscle. Given that protein synthesis is a high energy-consuming process, it may be transiently depressed during cellular energy stress. Thus, the intent of this investigation was to examine whether AMPK activation modulates the translational control of protein synthesis in skeletal muscle. Injections of 5-aminoimidazole-4-carboxamide 1-beta-d-ribonucleoside (AICAR) were used to activate AMPK in male rats. The activity of alpha1 AMPK remained unchanged in gastrocnemius muscle from AICAR-treated animals compared with controls, whereas alpha2 AMPK activity was significantly increased (51%). AICAR treatment resulted in a reduction in protein synthesis to 45% of the control value. This depression was associated with decreased activation of protein kinases in the mammalian target of rapamycin (mTOR) signal transduction pathway as evidenced by reduced phosphorylation of protein kinase B on Ser(473), mTOR on Ser(2448), ribosomal protein S6 kinase on Thr(389), and eukaryotic initiation factor eIF4E-binding protein on Thr(37). A reduction in eIF4E associated with eIF4G to 10% of the control value was also noted. In contrast, eIF2B activity remained unchanged in response to AICAR treatment and therefore would not appear to contribute to the depression in protein synthesis. This is the first investigation to demonstrate changes in translation initiation and skeletal muscle protein synthesis in response to AMPK activation.  相似文献   

3.
The present study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle after administration of endotoxin (LPS). Rats implanted with vascular catheters were injected intravenously with a nonlethal dose of Escherichia coli LPS, and samples were collected at 4 and 24 h thereafter; pair-fed control animals were also included. The rate of muscle (gastrocnemius) protein synthesis in vivo was reduced at both time points after LPS administration. LPS did not alter tissue RNA content, but the translational efficiency was consistently reduced at both time points. To identify mechanisms responsible for regulating translation, we examined several eukaryotic initiation factors (eIFs). The content of eIF2alpha or the amount of eIF2alpha in the phosphorylated form did not change in response to LPS. eIF2B activity was decreased in muscle 4 h post-LPS but activity returned to control values by 24 h. A decrease in the relative amount of eIF2Balpha protein was not responsible for the LPS-induced reduction in eIF2B activity. LPS also markedly altered the distribution of eIF4E in muscle. Compared with control values, LPS-treated rats demonstrated 1) a transient increase in binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF4E, 2) a transient decrease in the phosphorylated gamma-form of 4E-BP1, and 3) a sustained decrease in the amount of eIF4G associated with eIF4E. LPS also decreased insulin-like growth factor (IGF) I protein and mRNA expression in muscle at both times. A significant linear relationship existed between muscle IGF-I and the rate of protein synthesis or the amount of eIF4E bound to eIF4G. In summary, these data suggest that LPS impairs muscle protein synthesis, at least in part, by decreasing translational efficiency, resulting from an impairment in translation initiation associated with alterations in both eIF2B activity and eIF4E availability.  相似文献   

4.
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.  相似文献   

5.
Regulation of mammalian translation factors by nutrients.   总被引:13,自引:0,他引:13  
Protein synthesis requires both amino acids, as precursors, and a substantial amount of metabolic energy. It is well established that starvation or lack of nutrients impairs protein synthesis in mammalian cells and tissues. Branched chain amino acids are particularly effective in promoting protein synthesis. Recent work has revealed important new information about the mechanisms involved in these effects. A number of components of the translational machinery are regulated through signalling events that require the mammalian target of rapamycin, mTOR. These include translational repressor proteins (eukaryotic initiation factor 4E-binding proteins, 4E-BPs) and protein kinases that act upon the small ribosomal subunit (S6 kinases). Amino acids, especially leucine, positively regulate mTOR signalling thereby relieving inhibition of translation by 4E-BPs and activating the S6 kinases, which can also regulate translation elongation. However, the molecular mechanisms by which amino acids modulate mTOR signalling remain unclear. Protein synthesis requires a high proportion of the cell's metabolic energy, and recent work has revealed that metabolic energy, or fuels such as glucose, also regulate targets of the mTOR pathway. Amino acids and glucose modulate a further important regulatory step in translation initiation, the activity of the guanine nucleotide-exchange factor eIF2B. eIF2B controls the recruitment of the initiator methionyl-tRNA to the ribosome and is activated by insulin. However, in the absence of glucose or amino acids, insulin no longer activates eIF2B. Since control of eIF2B is independent of mTOR, these data indicate the operation of additional, and so far unknown, regulatory mechanisms that control eIF2B activity.  相似文献   

6.
The HIV protease inhibitor indinavir adversely impairs carbohydrate and lipid metabolism, whereas its influence on protein metabolism under in vivo conditions remains unknown. The present study tested the hypothesis that indinavir also decreases basal protein synthesis and impairs the anabolic response to insulin in skeletal muscle. Indinavir was infused intravenously for 4 h into conscious rats, at which time the homeostasis model assessment of insulin resistance was increased. Indinavir decreased muscle protein synthesis by 30%, and this reduction was due to impaired translational efficiency. To identify potential mechanisms responsible for regulating mRNA translation, several eukaryotic initiation factors (eIFs) were examined. Under basal fasted conditions, there was a redistribution of eIF4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex, and this change was associated with a marked decrease in the phosphorylation of 4E-BP1 in muscle. Likewise, indinavir decreased constitutive phosphorylation of eIF4G and mTOR in muscle, but not S6K1 or the ribosomal protein S6. In contrast, the ability of a maximally stimulating dose of insulin to increase the phosphorylation of PKB, 4E-BP1, S6K1, or mTOR was not altered 20 min after intravenous injection. Indinavir increased mRNA expression of the ubiquitin ligase MuRF1, but the plasma concentration of 3-methylhistidine remained unaltered. These indinavir-induced changes were associated with a marked reduction in the plasma testosterone concentration but were independent of changes in plasma levels of IGF-I, corticosterone, TNF-alpha, or IL-6. In conclusion, indinavir acutely impairs basal protein synthesis and translation initiation in skeletal muscle but, in contrast to muscle glucose uptake, does not impair insulin-stimulated signaling of protein synthetic pathways.  相似文献   

7.
The contribution of mammalian target of rapamycin (mTOR) signaling to the resistance exercise-induced stimulation of skeletal muscle protein synthesis was assessed by administering rapamycin to Sprague-Dawley rats 2 h prior to a bout of resistance exercise. Animals were sacrificed 16 h postexercise, and gastrocnemius protein synthesis, mTOR signaling, and biomarkers of translation initiation were assessed. Exercise stimulated the rate of protein synthesis; however, this effect was prevented by pretreatment with rapamycin. The stimulation of protein synthesis was mediated by an increase in translation initiation, since exercise caused an increase in polysome aggregation that was abrogated by rapamycin administration. Taken together, the data suggest that the effect of rapamycin was not mediated by reduced phosphorylation of eukaryotic initiation factor 4E (eIF4E) binding protein 1 (BP1), because exercise did not cause a significant change in 4E-BP1(Thr-70) phosphorylation, 4E-BP1-eIF4E association, or eIF4F complex assembly concomitant with increased protein synthetic rates. Alternatively, there was a rapamycin-sensitive decrease in relative eIF2Bepsilon(Ser-535) phosphorylation that was explained by a significant increase in the expression of eIF2Bepsilon protein. The proportion of eIF2Bepsilon mRNA in polysomes was increased following exercise, an effect that was prevented by rapamycin treatment, suggesting that the increase in eIF2Bepsilon protein expression was mediated by an mTOR-dependent increase in translation of the mRNA encoding the protein. The increase in eIF2Bepsilon mRNA translation and protein abundance occurred independent of similar changes in other eIF2B subunits. These data suggest a novel link between mTOR signaling and eIF2Bepsilon mRNA translation that could contribute to the stimulation of protein synthesis following acute resistance exercise.  相似文献   

8.
The study described herein investigated the role of free fatty acids (FFAs) in the maintenance of protein synthesis in vivo in rat cardiac and skeletal muscle. Suppression of FFA beta-oxidation by methyl palmoxirate caused a marked reduction in protein synthesis in the heart. The effect on protein synthesis was mediated in part by changes in the function of eukaryotic initiation factors (eIFs) involved in the initiation of mRNA translation. The guanine nucleotide exchange activity of eIF2B was repressed, phosphorylation of the alpha-subunit of eIF2 was enhanced, and phosphorylation of eIF4E-binding protein-1 and ribosomal protein S6 kinase was reduced. Similar changes in protein synthesis and translation initiation were not observed in the gastrocnemius following treatment with methyl palmoxirate. In heart, repressed beta-oxidation of FFA correlated, as demarcated by changes in the ATP/AMP ratio and phosphorylation of AMP-activated kinase, with alterations in the energy status of the tissue. Therefore, the activation state of signal transduction pathways that are responsive to cellular energy stress represents one mechanism whereby translation initiation may be regulated in cardiac muscle.  相似文献   

9.
Skeletal muscle protein synthesis is reduced in neonatal pigs in response to endotoxemia. To examine the role of insulin in this response, neonatal pigs were infused with endotoxin (LPS, 0 and 10 mug.kg(-1).h(-1)), whereas glucose and amino acids were maintained at fasting levels and insulin was clamped at fasting or fed (2 or 10 muU/ml) levels. Fractional rates of protein synthesis and translational control mechanisms were examined in longissimus dorsi muscle and liver. In the presence of fasting insulin, LPS reduced muscle protein synthesis (-29%), and increasing insulin to fed levels accelerated muscle protein synthesis in both groups (controls, +44%; LPS, +64%). LPS, but not insulin, increased liver protein synthesis by +28%. In muscle of fasting neonatal pigs, LPS reduced 4E-BP1 phosphorylation and eIF4E to eIF4G binding. In muscle of controls, but not LPS pigs, raising insulin to fed levels increased 4E-BP1 and S6K1 phosphorylation and eIF4E to eIF4G binding. In muscle and liver, neither LPS nor insulin altered eIF2B activity. eEF2 phosphorylation decreased in response to insulin in both LPS and control animals. The results suggest that, in endotoxemic neonatal animals, the response of protein synthesis to insulin is maintained despite suppression of mTOR-dependent translation initiation and eIF4E availability for eIF4F assembly. Maintenance of an anabolic response to the feeding-induced rise in insulin likely exerts a protective effect for the neonate to the catabolic processes induced by sepsis.  相似文献   

10.
Elevations in free fatty acids (FFAs) impair glucose uptake in skeletal muscle. However, there is no information pertaining to the effect of elevated circulating lipids on either basal protein synthesis or the anabolic effects of leucine and insulin-like growth factor I (IGF-I). In chronically catheterized conscious rats, the short-term elevation of plasma FFAs by the 5-h infusion of heparin plus Intralipid decreased muscle protein synthesis by approximately 25% under basal conditions. Lipid infusion was associated with a redistribution of eukaryotic initiation factor (eIF)4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex. This shift was associated with a decreased phosphorylation of eIF4G but not 4E-BP1. Lipid infusion did not significantly alter either the total amount or phosphorylation state of mTOR, TSC2, S6K1, or the ribosomal protein S6 under basal conditions. In control rats, oral leucine increased muscle protein synthesis. This anabolic response was not impaired by lipid infusion, and no defects in signal transduction pathways regulating translation initiation were detected. In separate rats that received a bolus injection of IGF-I, lipid infusion attenuated the normal redistribution of eIF4E from the active to inactive complex and largely prevented the increased phosphorylation of 4E-BP1, eIF4G, S6K1, and S6. This IGF-I resistance was associated with enhanced Ser(307) phosphorylation of insulin receptor substrate-1 (IRS-1). These data indicate that the short-term elevation of plasma FFAs impairs basal protein synthesis in muscle by altering eIF4E availability, and this defect may be related to impaired phosphorylation of eIF4G, not 4E-BP1. Moreover, hyperlipidemia impairs IGF-I action but does not produce leucine resistance in skeletal muscle.  相似文献   

11.
Prolonged sepsis and exposure to an inflammatory milieu decreases muscle protein synthesis and reduces muscle mass. As a result of its ability to integrate diverse signals, including hormones and nutrients, the mammalian target of rapamycin (mTOR) is a dominant regulator in the translational control of protein synthesis. Under postabsorptive conditions, sepsis decreases mTOR kinase activity in muscle, as evidenced by reduced phosphorylation of both eukaryotic initiation factor (eIF)4E-binding protein (BP)-1 and ribosomal S6 kinase (S6K)1. These sepsis-induced changes, along with the redistribution of eIF4E from the active eIF4E.eIF4G complex to the inactive eIF4E.4E-BP1 complex, are preventable by neutralization of tumor necrosis factor (TNF)-alpha but not by antagonizing glucocorticoid action. Although the ability of mTOR to respond to insulin-like growth factor (IGF)-I is not disrupted by sepsis, the ability of leucine to increase 4E-BP1 and S6K1 phosphorylation is greatly attenuated. This "leucine resistance" results from a cooperative interaction between both TNF-alpha and glucocorticoids. Finally, although septic animals are not IGF-I resistant, the anabolic actions of IGF-I are nonetheless reduced because of the development of growth hormone resistance, which decreases both circulating and muscle IGF-I. Herein, we highlight recent advances in the mTOR signaling network and emphasize their connection to the atrophic response observed in skeletal muscle during sepsis. Although many unanswered questions remain, understanding the cellular basis of the sepsis-induced decrease in translational activity will contribute to the rational development of therapeutic interventions and thereby minimize the debilitating affects of the atrophic response that impairs patient recovery.  相似文献   

12.
Acute alcohol (EtOH) intoxication impairs skeletal muscle protein synthesis. Although this impairment is not associated with a decrease in the total plasma amino acid concentration, EtOH may blunt the anabolic response to amino acids. To examine this hypothesis, rats were administered EtOH or saline (Sal) and 2.5 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess protein synthesis and signaling components important in translational control of protein synthesis. Oral Leu increased muscle protein synthesis by the same magnitude in Sal- and EtOH-treated rats. However, the increase in the latter group was insufficient to overcome the suppressive effect of EtOH, and the rate of synthesis remained lower than that observed in rats from the Sal-Sal group. Leu markedly increased phosphorylation of Thr residues 36, 47, and 70 on 4E-binding protein (BP)1 in muscle from rats not receiving EtOH, and this response was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E. 4E-BP1 to the active eIF4E. eIF4G complex. In EtOH-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E availability were partially abrogated. EtOH also prevented the Leu-induced increase in phosphorylation of eIF4G, the serine/threonine protein kinase S6K1, and the ribosomal protein S6. Moreover, EtOH attenuated the Leu-induced phosphorylation of the mammalian target of rapamycin (mTOR). The ability of EtOH to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin, insulin-like growth factor I, or Leu. Finally, although EtOH increased the plasma corticosterone concentration, inhibition of glucocorticoid action by RU-486 was unable to prevent EtOH-induced defects in the ability of Leu to stimulate 4E-BP1, S6K1, and mTOR phosphorylation. Hence, ethanol produces a leucine resistance in skeletal muscle, as evidenced by the impaired phosphorylation of 4E-BP1, eIF4G, S6K1, and mTOR, that is independent of elevations in endogenous glucocorticoids.  相似文献   

13.
The present study evaluated the ability of insulin-like growth factor I (IGF-I) complexed with IGF binding protein-3 (IGFBP-3) to modulate the sepsis-induced inhibition of protein synthesis in gastrocnemius. Beginning 16 h after the induction of sepsis, either the binary complex or saline was injected twice daily via a tail vein, with measurements made 3 and 5 days later. By day 3, sepsis had reduced plasma IGF-I concentrations approximately 50% in saline-treated rats. Administration of the binary complex provided exogenous IGF-I to compensate for the sepsis-induced diminished plasma IGF-I. Sepsis decreased rates of protein synthesis in gastrocnemius relative to controls by limiting translational efficiency. Treatment of septic rats with the binary complex for 5 days attenuated the sepsis-induced inhibition of protein synthesis and restored translational efficiency to control values. Assessment of potential mechanisms regulating translational efficiency showed that neither the sepsis-induced change in gastrocnemius content of eukaryotic initiation factor 2B (eIF2B), the amount of eIF4E associated with 4E binding protein-1 (4E-BP1), nor the phosphorylation state of 4E-BP1 or eIF4E were altered by the binary complex. Overall, the results are consistent with the hypothesis that decreases in plasma IGF-I are partially responsible for enhanced muscle catabolism during sepsis.  相似文献   

14.
15.
The studies described herein were designed to investigate the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an activator of the AMP-activated protein kinase (AMPK), on the translational control of protein synthesis and signaling through the mammalian target of rapamycin (mTOR) in rat liver. Effects of AICAR observed in vivo were compared with those obtained in an in situ perfused liver preparation to investigate activation of AMPK in the absence of accompanying changes in hormones and nutrients. AMPK became hyperphosphorylated, as assessed by a gel-shift analysis, in response to AICAR both in vivo and in situ; however, increased relative phosphorylation at the Thr172 site on the kinase was observed only in perfused liver. Phosphorylation of AMPK either in vivo or in situ was associated with a repression of protein synthesis as well as decreased phosphorylation of a number of targets of mTOR signaling including ribosomal protein S6 kinase 1, eukaryotic initiation factor (eIF)4G, and eIF4E-binding protein (4E-BP)1. The phosphorylation changes in eIF4G and 4E-BP1 were accompanied by a reduction in the amount of eIF4E present in the active eIF4E.eIF4G complex and an increase in the amount present in the inactive eIF4E.4E-BP1 complex. Reduced insulin signaling as well as differences in nutrient availability may have contributed to the effects observed in vivo as AICAR caused a fall in the serum insulin concentration. Overall, however, the results from both experimental models support a scenario in which AICAR directly represses protein synthesis and mTOR signaling in the liver through an AMPK-dependent mechanism.  相似文献   

16.
Induction of sepsis in rats causes an inhibition of protein synthesis in skeletal muscle that is resistant to the stimulatory actions of insulin. To gain a better understanding of the underlying reason for this lack of response, the present study was undertaken to investigate sepsis-induced alterations in insulin signaling to regulatory components of mRNA translation. Experiments were performed in perfused hindlimb preparations from rats 5 days after induction of a septic abscess. Sepsis resulted in a 50% reduction in protein synthesis in the gastrocnemius. Protein synthesis in muscles from septic rats, but not controls, was unresponsive to stimulation by insulin. The insulin-induced hyperphosphorylation response of the translation repressor protein 4E-binding protein 1 (4E-BP1) and of the 70-kDa S6 kinase (S6K1) (1), two targets of insulin action on mRNA translation, was unimpaired in gastrocnemius of septic rats. Hyperphosphorylation of 4E-BP1 in response to insulin resulted in its dissociation from the inactive eukaryotic initiation factor (eIF)4E. 4E-BP1 complex in both control and septic rats. However, assembly of the active eIF4F complex as assessed by the association of eIF4E with eIF4G did not follow the pattern predicted by the increased availability of eIF4E resulting from changes in the phosphorylation of 4E-BP1. Indeed, sepsis caused a dramatic reduction in the amount of eIF4G associated with eIF4E in the presence or absence of insulin. Thus the inability of insulin to stimulate protein synthesis during sepsis may be related to a defect in signaling to a step in translation initiation involved in assembly of an active eIF4F complex.  相似文献   

17.
Previous studies have shown that intravenous infusion of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates and that insulin and amino acids act independently to produce this effect. The goal of the present study was to delineate the regulatory roles of insulin and amino acids on muscle protein synthesis in neonates by examining translational control mechanisms, specifically the eukaryotic translation initiation factors (eIFs), which enable coupling of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. Insulin secretion was blocked by somatostatin in fasted 7-day-old pigs (n = 8-12/group), insulin was infused to achieve plasma levels of approximately 0, 2, 6, and 30 microU/ml, and amino acids were clamped at fasting or fed levels or, at the high insulin dose, below fasting. Both insulin and amino acids increased the phosphorylation of ribosomal protein S6 kinase (S6K1) and the eIF4E-binding protein (4E-BP1), decreased the binding of 4E-BP1 to eIF4E, increased eIF4E binding to eIF4G, and increased fractional protein synthesis rates but did not affect eIF2B activity. In the absence of insulin, amino acids had no effect on these translation initiation factors but increased the protein synthesis rates. Raising insulin from below fasting to fasting levels generally did not alter translation initiation factor activity but raised protein synthesis rates. The phosphorylation of S6K1 and 4E-BP1 and the amount of 4E-BP1 bound to eIF4E and eIF4E bound to eIF4G were correlated with insulin level, amino acid level, and protein synthesis rate. Thus insulin and amino acids regulate muscle protein synthesis in skeletal muscle of neonates by modulating the availability of eIF4E for 48S ribosomal complex assembly, although other processes also must be involved.  相似文献   

18.
Phosphorylation of eukaryotic initiation factor 4G (eIF4G) is hypothesized to be an important contributor to the stimulation of protein synthesis in skeletal muscle following meal feeding. The experiments reported herein examined the potential role for a rapamycin-sensitive signaling pathway in mediating the meal feeding-induced elevations in phosphorylation of eIF4G. Gastrocnemius from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled prior to and following 3 h of having the meal provided in the presence or absence of treatment with rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) complex 1 (TORC1). Pretreatment with rapamycin prevented the feeding-induced phosphorylation of mTOR, eIF4G, and S6K1 but only partially attenuated the shift in 4E-BP1 into the gamma-form. In contrast, the feeding-induced increase in phosphorylation of PKCepsilon was not reduced by rapamycin. Rapamycin also prevented the augmented association of eIF4G with eIF4E and the decreased association of eIF4E with 4E-BP1. Similar findings were observed in gastrocnemius from animals after oral administration of leucine. Perfusion of gastrocnemius with medium containing rapamycin partially prevented the leucine-induced increase in phosphorylation of eIF4G. Thus, rapamycin attenuated a feeding- or leucine-induced phosphorylation of eIF4G in skeletal muscle both in vivo and in situ. The latter observation implies that the effects observed with rapamycin were the result of modulation of skeletal muscle signaling mechanisms responsible for eIF4G phosphorylation.  相似文献   

19.
Leucine (Leu) is known to stimulate translation initiation of protein synthesis at mammalian target of rapamycin (mTOR) in the insulin signaling pathway. However, potential feedback from mTOR to upstream aspects of the insulin signaling pathway remains controversial. This study evaluates the impact of a physiological oral dose of Leu and/or carbohydrate (CHO) on upstream elements of the insulin signaling pathway using phosphatidylinositol 3-kinase (PI 3-kinase) activity and glucose uptake as markers for insulin sensitivity and glucose homeostasis. Rats (approximately 200 g) were fasted 12 h and administered oral doses of CHO (1.31 g glucose, 1.31 g sucrose), Leu (270 mg), or CHO plus Leu. Animals were killed at 15, 30, 60, and 90 min after treatment. Plasma and gastrocnemius muscles were collected for analyses. Treatments were designed to produce elevated blood glucose and insulin with basal levels of Leu (CHO); elevated Leu with basal levels of glucose and insulin (Leu); or a combined increase of glucose, insulin, and Leu (CHO + Leu). The CHO treatment stimulated PI 3-kinase activity and glucose uptake with no effect on the downstream translation initiation factor eIF4E. Leu alone stimulated the release of the translation initiation factor eIF4E from 4E-BP1 with no effects on PI 3-kinase activity or glucose uptake. The CHO + Leu treatment reduced the magnitude and duration of the PI 3-kinase response but maintained glucose uptake similar to the CHO treatment and eIF4E levels similar to the Leu treatment. These findings demonstrate that Leu reduces insulin-stimulated PI 3-kinase activity while increasing downstream translation initiation and with no effect on net glucose transport in skeletal muscle.  相似文献   

20.
Acute alcohol intoxication impairs myocardial protein synthesis in rats, secondary to a diminished mRNA translational efficiency. Decreased mRNA translational efficiency occurs through altered regulation of peptide chain initiation. The purpose of the present set of experiments was to determine whether acute alcohol intoxication alters the phosphorylation state of eukaryotic initiation factor (eIF) 4G, eIF4G.eIF4E complex formation, and the mammalian target of rapamycin (mTOR) signaling pathway in the heart. Acute alcohol intoxication was induced by injection of alcohol (75 mmol/kg body wt ip). Control animals received an equal volume of saline. Alcohol administration enhanced phosphorylation of eIF4G (Ser(1108)) approximately threefold. Alcohol administration lowered formation of the active eIF4G.eIF4E complex by >90%, whereas it increased the abundance of the inactive 4E-binding protein 1 (4E-BP1).eIF4E complex by approximately 160%. Phosphorylation of mTOR on Ser(2448) and Ser(2481) was decreased by 50%. Reduced mTOR phosphorylation did not result from decreased phosphorylation of PKB. Phosphorylation of 4E-BP1 and S6 kinase 1 (Thr(389)), downstream targets of mTOR, were also reduced after acute alcohol administration. These data suggest that acute alcohol-induced impairments in myocardial mRNA translation initiation result, in part, from marked decreases in eIF4G.eIF4E complex formation, which appear to be independent of changes in phosphorylation of eIF4G but dependent on mTOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号