首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Low levels of high density lipoprotein cholesterol (HDL-C) are associated with increased risk of coronary heart disease and, in the United States, are often associated with hypertriglyceridemia and obesity. In Turkey, low HDL-C levels are highly prevalent, 53% of men and 26% of women having HDL-C levels <35 mg/dl, in the absence of hypertriglyceridemia and obesity. In this study to investigate the cause of low HDL-C levels in Turks, various factors affecting HDL metabolism were assessed in normotriglyceridemic Turkish men and women living in Istanbul and in non-Turkish men and women living in San Francisco. Turkish men and women had significantly lower HDL-C levels than the San Francisco men and women, as well as markedly lower apolipoprotein A-I levels (25 and 39 mg/dl lower, respectively). In both Turkish and non-Turkish subjects, the mean body mass index was <27 kg/m2, the mean triglyceride level was <120 mg/dl, and the mean total cholesterol was 170-180 mg/dl. The mean hepatic triglyceride lipase activity was 21% and 31% higher in Turkish men and women, respectively, than in non-Turkish men and women, and remained higher even after subjects with a body mass index >50th percentile for men and women in the United States were excluded from the analysis. As no dietary or behavioral factors have been identified in the Turkish population that account for increased hepatic triglyceride lipase activity, the elevation most likely has a genetic basis. high density lipoprotein in a normotriglyceridemic, nonobese Turkish population.  相似文献   

3.
4.
It was recently noted that newborn mice have much higher lipase activity in plasma than rats or humans, and that most of the activity is due to an enzyme related to the hepatic (heparin-releasable) lipase. Here we report that this lipase is present in plasma of adult mice also. In contrast to the high activity of hepatic lipase, the activity of lipoprotein lipase in plasma was low and similar to that in rats. The source of the plasma lipase was probably the liver, since we could not demonstrate hepatic lipase-like activity in any other organ. When human hepatic lipase was injected into mice, it rapidly disappeared from plasma. Most of the injected lipase located in the liver, and could be released back into circulation by injection of heparin. These results indicate that there are binding sites for hepatic lipase in mouse liver, and suggest that mouse hepatic lipase has an affinity for these sites which is lower than usual. It is currently believed that the endothelial acceptors are heparan-sulfate or similar molecules. Mouse hepatic lipase eluted from heparin-Sepharose at lower salt concentration than rat or human hepatic lipase, demonstrating that it has a relatively low affinity for heparin-like polysaccharides.  相似文献   

5.
6.
The activities of isocitrate lyase, esterase, and lipase by the psychrotrophic Acinetobacter sp. strain HH1-1 were monitored during incubation at 25 degreesC, 5 degreesC, and after a 25 degreesC to 5 degreesC down shift in growth temperature. During growth at 25 degreesC, isocitrate lyase activity was detected in cell-free extracts, but at 5 degreesC and after cold shock, activity was measured primarily in the cell culture supernatant. Strain HH1-1 produced two cell-associated esterases and an extracellular esterase and lipase. Activities of the extracellular esterase and lipase were reduced when cells were grown at 5 degreesC and after cold shock. In contrast, an increased synthesis of a 53-kDa cell-associated esterase was observed 50 h after cold shock. An extracellular polysaccharide was also produced, indicated by a decrease in surface tension in cell culture supernatant when cells were incubated at 25 degreesC; but like extracellular enzyme activity, production of the exopolymer was reduced when cells were subjected to low temperatures. These results indicated that the intracellular enzyme, isocitrate lyase, leaked out of the cell after cold shock and during growth at 5 degreesC. The increased activity of a cell-associated esterase suggested this enzyme is required for growth at low temperatures. In contrast, activities of extracellular lipolytic enzymes and production of an extracellular polysaccharide were negatively affected at the lower temperatures.  相似文献   

7.
1. The lipolytic activities that sequentially hydrolyze tri-, di- and monoacylglycerol in rat post-heparin heart effluents were examined. 2. Properties of triacylglycerol lipase (TAGL) activity were typical of lipoprotein lipase. Diacylglycerol lipase (DAGL) behaved similarly to TAGL, suggesting that both activities refer to the same catalytic entity. 3. Differences, particularly in thermal stability, between TAGL and DAGL activities on one hand, and monoacylglycerol lipase (MAGL) activity on the other, may reflect different intrinsic molecular properties. 4. TAGL, DAGL and MAGL activities could not be separated by physical means and appeared to belong to a single unit at the same site on the capillary wall.  相似文献   

8.
Although the contribution of Notch ligands expressed by antigen-presenting cells (APCs) to the Th1/Th2 differentiation has been suggested in mouse studies, their nature in humans remains obscure. To assess the issue, we examined correlation of Notch ligand mRNA levels of human APCs with Th1/Th2-promoting stimulations, i.e. Th1/Th2 adjuvant activities. The expression patterns of human dendritic cells (DCs) and leukemic cell line models of APCs differed partly from those previously observed in mouse DCs and by cellular types and maturation stages. Most strikingly, Th2 adjuvants enhanced the Delta1 expression on human APCs but did not induce Delta4 expression, which was induced by a Th1 adjuvant. The differential expression patterns suggest a distinct role of these Delta members in Th1/Th2 differentiation and their predictive potential for Th1/Th2-promoting activities.  相似文献   

9.
10.
Over a third of the US adult population has hypertriglyceridemia, resulting in an increased risk of atherosclerosis, pancreatitis, and metabolic syndrome. Lipoprotein lipase (LPL), a dimeric enzyme, is the main lipase responsible for TG clearance from the blood after food intake. LPL requires an endoplasmic reticulum (ER)-resident, transmembrane protein known as lipase maturation factor 1 (LMF1) for secretion and enzymatic activity. LMF1 is believed to act as a client specific chaperone for dimeric lipases, but the precise mechanism by which LMF1 functions is not understood. Here, we examine which domains of LMF1 contribute to dimeric lipase maturation by assessing the function of truncation variants. N-terminal truncations of LMF1 show that all the domains are necessary for LPL maturation. Fluorescence microscopy and protease protection assays confirmed that these variants were properly oriented in the ER. We measured cellular levels of LMF1 and found that it is expressed at low levels and each molecule of LMF1 promotes the maturation of 50 or more molecules of LPL. Thus we provide evidence for the critical role of the N-terminus of LMF1 for the maturation of LPL and relevant ratio of chaperone to substrate.  相似文献   

11.
The glypican family of heparan sulfate proteoglycans has been implicated in formation of morphogen gradients. Here, we examine the role of the glypican Dally-like protein (Dlp) in shaping the Wingless gradient in the Drosophila wing disc. Surprisingly, we find that Dlp has opposite effects at high and low levels of Wingless. Dlp promotes low-level Wingless activity but reduces high-level Wingless activity. We present evidence that the Wg antagonist Notum acts to induce cleavage of the Dlp glypican at the level of its GPI anchor, which leads to shedding of Dlp. Thus, spatially regulated modification of Dlp by Notum employs the ligand binding activity of Dlp to promote or inhibit signaling in a context-dependent manner. Notum-induced shedding of Dlp could convert Dlp from a membrane-tethered coreceptor to a secreted antagonist.  相似文献   

12.
Oral glucose tolerance, insulin binding to erythrocyte receptors, serum lipids, and lipoproteins, and lipoprotein lipase activities of adipose tissue and skeletal muscle were measured in nine body builders (relative body weight (RBW) 118 +/- 4%), eight weight-matched (RBW 120 +/- 5%) and seven normal-weight controls (RBW 111 +/- 3%). The body builders had 50% higher relative muscle mass of body weight (% muscle) and 50% smaller relative body fat content (% fat) than the two other groups (P less than 0.005). Maximal aerobic power was comparable in the three groups. In the oral glucose tolerance test (OGTT), blood glucose levels, and plasma insulin levels were lower (P less than 0.05) in the body builders than in weight-matched controls. Insulin binding to erythrocytes was similar in each group. On the basis of multiple linear regression analysis, 87% of the variation in plasma insulin response could be explained by body composition (% muscle and % fat) and VO2max. Plasma total cholesterol, low-density lipoprotein (LDL) cholesterol, and very low-density lipoprotein (VLDL) triglyceride concentrations were significantly lower in the body builders than in weight-matched controls. In comparison with the normal-weight group, the body builders had a lower total cholesterol level. High density lipoprotein (HDL) cholesterol, its subfractions (HDL2 and HDL3 cholesterol) and lipoprotein lipase (LPL) activities of adipose tissue and skeletal muscle were comparable in all three groups. Partial correlation analysis showed a positive relationship between plasma total triglyceride, total cholesterol and LDL cholesterol on the other hand and the % fat on the other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Insulinemia in patients with essential hypertension and normal glucose tolerance was assessed. The study involved 25 patients divided into subgroups according body weight and 9 of control subjects. It was found, that hyperinsulinemia seen in hypertensive patients seems to be associated with obesity. Moreover, hyperinsulinemia does not depend primarily on hypersecretion of insulin but may reflect resistance to insulin and ab normal metabolism in the liver.  相似文献   

14.
The aim of this study was to design a convenient, specific, sensitive, and continuous lipase activity assay using natural long-chain triacylglycerols (TAGs). Oil was extracted from Parinari glaberrimum seed kernels and the purified TAGs were used as a substrate for detecting low levels of lipase activities. The purified TAGs are naturally fluorescent because more than half of the fatty acids from Parinari oil are known to contain 9,11,13, 15-octadecatetraenoic acid (parinaric acid) in its esterified form. The presence of detergents (sodium taurodeoxycholate, CHAPS, Sulfobetaine SB12, Tween 20, Brij 35, Dobanol, n-dodecylglucoside) above their critical micellar concentration dramatically increases the fluorescence of the parinaric acid released by various lipases. This increase in the fluorescence intensity is linear with time and proportional to the amount of lipase added. This new method, performed under non-oxidative conditions, was applied successfully to detecting low lipase levels in crude protein extracts from plant seeds and could be scaled down to microtiterplate measurements. Quantities as low as 0.1 ng of pure pancreatic lipase could be detected under standard conditions (pH 8). Lipase activity can also be assayed in acidic media (pH 5) using human gastric lipase. This simple and continuous assay is compatible with a high sample throughput and might be applied to detecting true lipase activities in various biological samples.  相似文献   

15.
Hepatic lipase (HL) and lipoprotein lipase (LPL) activities (HLA, LPLA) modify lipoproteins and facilitate their binding to hepatic receptors. Apolipoprotein E (APOE) physically interacts with the lipases, and the three common haplotypes of the APOE gene (ε2, ε3, and ε4) yield protein isoforms (E2, E3, and E4, respectively) that are functionally different. Lipase activities themselves differ by sex and exercise training status. The interaction of APOE genotype, exercise training, and sex effects on lipase activities has not been studied. We measured postheparin plasma lipase activities in normolipidemic men and women with the three most common APOE genotypes, which are the haplotype combinations ε2/ε3 (n = 53 ), ε3/ε3 (n = 62), and ε4/ε3 (n = 52), enrolled in 6 mo of aerobic exercise training. These haplotype combinations comprise an estimated 11.6, 62.3, and 21.3% of the population, respectively. Baseline HLA was 35% lower in women than in men (P < 0.0001). In men but not women, HLA was higher in ε2/ε3 group compared with ε4/ε3 (P = 0.01) and ε3/ε3 (P = 0.05). Neither sex nor APOE genotype affected baseline LPLA. Training decreased HLA by 5.2% (P = 0.018) with no APOE effect. The apparent increase in LPLA following exercise was significant and APOE dependent only when corrected for baseline insulin (P < 0.05). Exercise decreased LPLA by 0.8 μmol free fatty acid (FFA)·ml?1·h?1 (-6%) in ε3/ε3 compared with the combined increases of 6.6% in ε2/ε3 and 12% in ε4/ε3 (P = 0.018 vs. ε3/ε3). However, these differences were statistically significant only after correcting for baseline insulin. We conclude that common APOE genotypes interact with 1) sex to modulate HLA regardless of training status, with ε2/ε3 men demonstrating higher HLA than ε3/ε3 or ε4/ε3 men, and 2) aerobic training to modulate LPLA, regardless of sex, with ε3/ε3 subjects showing a significant decrease compared with an increase in ε2/ε3 and ε3/ε4 after controlling for baseline insulin.  相似文献   

16.
Diacylglycerol lipase and kinase activities in rat brain microvessels   总被引:5,自引:0,他引:5  
Diacylglycerols can accumulate transiently in intact cells as a consequence of the degradation of phosphatidylinositol by phospholipase C, but little information is available concerning their metabolic fate in the vascular endothelium. Diacylglycerol lipase and kinase activities were measured in rat brain microvessel preparations. Lipase activity, measured by the release of free fatty acids, was much greater at pH 4.5 than at pH 7. The acid lipase was predominantly particulate and likely originated in lysosomes, whereas the neutral lipase was mainly soluble. The fatty acid at the sn-1 position of the diacylglycerol substrate was hydrolyzed faster than that at the sn-2 position at both pH 4.5 and 7. The 2-monoacylglycerol accumulated at pH 4.5 but not at 7 due to the presence of a monoacylglycerol lipase activity with a neutral pH optimum. The formation of phosphatidic acid (kinase activity) was also measured in microvessels. When lipase and kinase activities were measured simultaneously, the formation of phosphatidic acid from a 1-palmitoyl-2-[1-14C]oleoyl-sn-glycerol substrate was 4-fold greater than the release of fatty acid (oleate) from the sn-2 position. Introduction of arachidonic acid to the sn-2 position of the diacylglycerol substrate increased kinase activity but reduced lipase activity. The release of fatty acids from the sn-2 position of phosphatidic acid could not be detected.  相似文献   

17.
We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans.  相似文献   

18.
Plasma clearance of triglyceride-rich lipoproteins appears decreased in aged humans and rats and may be due to lowered activities of the lipases responsible for lipid degradation. This study was designed to examine differential effects of age and diet on lipoprotein lipase (LPL) activity of adipose and heart tissue and hepatic triglyceride lipase (HTGL) activity. LPL and HTGL activities were examined in 3- and 13-month-old Sprague-Dawley rats after they had consumed either a high-carbohydrate or a high-fat diet for 14 days. The data were analyzed for age and diet differences by two-way analysis of variance. Although animals in the two age groups consumed diets of equal caloric content, the older rats gained less weight. Rats on the high-carbohydrate diet consumed less calories and gained less weight than the fat fed rats in both age groups. Neither heart nor adipose tissue LPL activity differed when examined for age or diet. HTGL activity levels, while not affected by age, were higher in the carbohydrate fed rats (P = 0.014). Regardless of age group, fasting plasma cholesterol levels were significantly higher in the carbohydrate-fed rats than fat-fed rats (P = 0.002). Thus, the diet effect was much stronger than the age effect for HTGL and plasma cholesterol levels.  相似文献   

19.
There are conflicting reports on the effect of stimulation of the beta-adrenergic receptors on insulin removal by the liver. It was, therefore, the aim of the present study to clarify that problem. Four experiments have been carried out on a group of 8 healthy female volunteers: (1) isoproterenol was infused intravenously, (2) glucose was infused intravenously, (3) isoproterenol was infused with glucose, and (4) infusion of isoproterenol and glucose was preceded by administration of propranolol (the beta-adrenergic blocking agent). The concentration of C-peptide and insulin was determined in plasma from the antecubital vein. It has been found that stimulation of the beta-adrenergic receptors with isoproterenol reduces insulin removal by the human liver. This effect of isoproterenol is prevented by blockade of the beta-adrenergic receptors with propranolol.  相似文献   

20.
Jin-young Min  Kyoung-bok Min 《CMAJ》2013,185(9):E402-E408

Background:

Connecting peptide (C-peptide) plays a role in early atherogenesis in patients with diabetes mellitus and may be a marker for cardiovascular morbidity and mortality in patients without diabetes. We investigated whether serum C-peptide levels are associated with all-cause, cardiovascular-related and coronary artery disease–related mortality in adults without diabetes.

Methods:

We used data from the Third Nutrition and Health Examination Survey (NHANES III) and the NHANES III Linked Mortality File in the United States. We analyzed mortality data for 5902 participants aged 40 years and older with no history of diabetes and who had available serum C-peptide levels from the baseline examination. We grouped the participants by C-peptide quartile, and we performed Cox proportional hazards regression analysis. The primary outcome was all-cause, cardiovascular-related and coronary artery disease–related mortality.

Results:

The mean serum C-peptide level in the study sample was 0.78 (± standard deviation 0.47) nmol/L. The adjusted hazards ratio comparing the highest quartile with the lowest quartile was 1.80 (95% confidence interval [CI] 1.33–2.43) for all-cause mortality, 3.20 (95% CI 2.07–4.93) for cardiovascular-related mortality, and 2.73 (95% CI 1.55–4.82) for coronary artery disease–related mortality. Higher C-peptide levels were associated with increased mortality among strata of glycated hemoglobin and fasting serum glucose.

Interpretation:

We found an association between serum C-peptide levels and all-cause and cause-specific mortality among adults without diabetes at baseline. Our finding suggests that elevated C-peptide levels may be a predictor of death.Connecting peptide (C-peptide), a cleavage product of proinsulin, is secreted by pancreatic β cells in equimolar amounts along with insulin.1 Although a considerable amount of insulin is extracted by the liver, C-peptide is subjected to negligible first-pass metabolism by the liver, thereby serving as a surrogate marker for endogenous insulin secretion.2 C-peptide has been considered an inert by-product of insulin synthesis and has also been of great value in the understanding of the pathophysiology of type 1 and type 2 diabetes mellitus.2,3 However, C-peptide has recently been re-evaluated as a bioactive peptide in its own right. The administration of C-peptide to patients and animals with type 1 diabetes has been reported to have a beneficial effect on diabetes-induced abnormalities of the peripheral nerves and renal and microvascular function.4,5 C-peptide deposition occurs in the atherosclerotic lesions of patients with diabetes.6 Recent studies have suggested that C-peptide may be a valuable predictor of cardiovascular events and mortality (all-cause and cardiovascular-related mortality).612In this study, we investigated the association between serum C-peptide level and all-cause, cardiovascular-related and coronary artery disease–related mortality among patients without diabetes. We also estimated mortality as C-peptide increased across glycated hemoglobin and fasting blood glucose quartiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号