首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tenascin is an extracellular matrix glycoprotein with an unusually restricted tissue distribution in the developing embryo. The protein was independently discovered by several investigators, and has been given many different names. Synonyms of tenascin include cytotactin, J1, hexabrachion and glioma-mesenchymal extracellular matrix antigen. Whereas fibronectin is expressed rather uniformly in matrices of embryonic mesenchyme, tenascin is found in the mesenchyme at sites of epithelial-mesenchymal interactions. Tenascin is thus found close to epithelial basement membranes but it is probably not an integral basement membrane component. The distribution suggests that developing epithelial cells may produce locally active factors that stimulate tenascin synthesis in the nearby mesenchyme. Tenascin is composed of disulfide-bonded subunits of approximate Mr between 200-280 kD. Using monoclonal antibodies to mouse tenascin, we find two major subunits of Mr 260 and 200 kD from mouse fibroblasts. Work from many laboratories suggests that the different subunits arise by differential splicing of one mRNA. Rotary shadowing electron microscopy of the intact molecule suggests a six-armed structure connected by a central region. However, the different subunits are not co-ordinately expressed during embryogenesis, suggesting that tenascin can exist as different isoforms. The different isoforms may serve distinct functions. The function of tenascin is not well known, but it has been suggested that it alters the adhesive properties of cells and causes cell rounding.  相似文献   

3.
The carbohydrate chains present in the tubular basement membrane of bovine kidney were studied. Digestion with collagenase followed with pronase resulted in a complete solubilization of the basement membrane. The different glycopeptides were purified by gel filtration and ion-exchange chromatography. Two kinds of carbohydrate chains could be characterized: oligosaccharides composed of glucosamine, mannose, galactose, fucose and sialic acid, and glucosylgalactose disaccharides. A very small portion of the oligosaccharide chains (ca. 4%) appeared to be free of sialic acid. The bulk of these chains contained sialic acid and fucose, although in small amounts. Only traces of galactosamine were found.  相似文献   

4.
Chick embryo primitive streak grafts, placed beneath the epiblast of host embryos, tend to result in the formation of either a neural plate in response to anterior streak grafts, or in de-epithelialization in response to posterior grafts. Ultrastructural and immunocytochemical examination shows that both reactions are preceded by basement membrane disruption and early removal of fibronectin therefrom. This disruption does not occur in response to non-streak grafts. It is suggested that the disruption, evoked by primitive streak cells, is a prerequisite first step, allowing direct graft-epiblast cell contact. This contact elicits a specific cytoskeletal reaction determining the epiblast response.  相似文献   

5.
In a new culture-conditioning system of agar-coated mesenchyme of isolated incisor dental papillae, dentinogenesis has been induced adjacent to an agar substratum that functions as a foothold for cell immobilisation. To elucidate the role of the basement membrane (BM) in dentinogenesis, we have examined the way in which dentinogenesis depends upon BM components or transforming growth factor (TGF)-beta1 in this system. At the mesenchymal-epithelial junction of odontogenic organs (cut incisor tooth germs), TGF-beta1 visibly increased in the BM during incubation. In isolated dental papillae, BM components were synthesised and deposited at aligned peripheral cells of the explants, together with an increasing amount of TGF-beta1. These components were not assembled into extracellular matrix (ECM)-absorbed agar adjacent to explants, although dentinogenesis proceeded in the presence of pericellular BM components associated with TGF-beta1. When signalling via TGF-beta type II receptors was blocked, neither ECM production nor dentinogenesis was observed but explants partially detached from the agar surface, presumably as a result of the suppressed production of ECM, since attachment was retained by pre-coating explants with artificial matrices. Rescue experiments showed that TGF-beta1 regulated dentinogenesis through ECM production. With regard to BM components, inducible dentinogenesis was Arg-Gly-Asp (RGD)-dependent. Thus, pericellular BM components associated with TGF-beta1 and an ECM-absorbed agar substratum, which affects dentinogenesis, synergistically play a role similar to that of BM components in vivo. The BM therefore serves as a structural meshwork that acts as a foothold for cell immobilisation; its components act as ligands for RGD-dependent cell adhesion and it stores TGF-beta1, which regulates ECM production.  相似文献   

6.
The effect of nitrophenyl-beta-D-xyloside (xyloside), a synthetic initiator of glycosaminoglycan synthesis, on proteoglycan and glycosaminoglycan synthesis by a basement membrane producing tumor was studied. While xyloside markedly stimulated the formation of chondroitin sulfate chains, it depressed the formation of a basement membrane heparan sulfate proteoglycan and caused only little formation of free heparan sulfate chains. However, when the synthesis of the core protein of the proteoglycan was inhibited by cycloheximide, heparan sulfate chains were produced by xyloside treatment. These heparan sulfate chains had a sulfate content higher than that of heparan sulfate found on the proteoglycan. The data indicate that xyloside can substitute for the heparan sulfate initiation site on the core protein of the proteoglycan and that this initiation is enhanced in the absence of core protein. This suggests that under normal conditions the formation of heparan sulfate chains may be tightly linked to the production of the core protein.  相似文献   

7.
8.
Morphogenesis of embryonic organs is regulated by epithelial-mesenchymal interactions associating with changes in the extracellular matrix (ECM). The response of the cells to the changes in the ECM must involve integral cell surface molecules that recognize their matrix ligand and initiate transmission of signal intracellularly. We have studied the expression of the cell surface proteoglycan, syndecan, which is a matrix receptor for epithelial cells (Saunders, S., M. Jalkanen, S. O'Farrell, and M. Bernfield. J. Cell Biol. In press.), and the matrix glycoprotein, tenascin, which has been proposed to be involved in epithelial-mesenchymal interactions (Chiquet-Ehrismann, R., E. J. Mackie, C. A. Pearson, and T. Sakakura. 1986. Cell. 47:131-139) in experimental tissue recombinations of dental epithelium and mesenchyme. Our earlier studies have shown that in mouse embryos both syndecan and tenascin are intensely expressed in the condensing dental mesenchyme surrounding the epithelial bud (Thesleff, I., M. Jalkanen, S. Vainio, and M. Bernfield. 1988. Dev. Biol. 129:565-572; Thesleff, I., E. Mackie, S. Vainio, and R. Chiquet-Ehrismann. 1987. Development. 101:289-296). Analysis of rat-mouse tissue recombinants by a monoclonal antibody against the murine syndecan showed that the presumptive dental epithelium induces the expression of syndecan in the underlying mesenchyme. The expression of tenascin was induced in the dental mesenchyme in the same area as syndecan. The syndecan and tenascin positive areas increased with time of epithelial-mesenchymal contact. Other ECM molecules, laminin, type III collagen, and fibronectin, did not show a staining pattern similar to that of syndecan and tenascin. Oral epithelium from older embryos had lost its ability to induce syndecan expression but the presumptive dental epithelium induced syndecan expression even in oral mesenchyme of older embryos. Our results indicate that the expression of syndecan and tenascin in the tooth mesenchyme is regulated by epithelial-mesenchymal interactions. Because of their early appearance, syndecan and tenascin may be used to study the molecular regulation of this interaction. The similar distribution patterns of syndecan and tenascin in vivo and in vitro and their early appearance as a result of epithelial-mesenchymal interaction suggest that these molecules may be involved in the condensation and differentiation of dental mesenchymal cells.  相似文献   

9.
Branching morphogenesis of mouse salivary gland has been studied with organ-culture system. We developed a novel transfilter culture system for analyzing branching morphogenesis of the salivary epithelium. The submandibular salivary epithelium from early 13-day mouse fetus, clotted with Matrigel and separated from the mesenchyme by membrane filter, showed extensive growth and branching morphogenesis, morphological differentiation of lobules and stalks, and a typical cleft shape. The epithelium showed little growth and no branching without Matrigel clot or without the mesenchyme. This branching morphogenesis was induced even when the pore size of the filter was reduced to 0.05 microns. Use of type I collagen gel instead of Matrigel mostly induced incomplete morphogenesis with various histological abnormalities. These results suggest that the salivary epithelium can undergo branching morphogenesis in the absence of the mechanical action of mesenchymal cells although it needs an appropriate extracellular matrix and some mesenchymal factors transmitted through the filter.  相似文献   

10.
Tenascin, a mesenchymal extracellular matrix glycoprotein, has been implicated in epithelial-mesenchymal interactions during fetal development (Chiquet-Ehrismann, R., E. J. Mackie, C. A. Pearson, T. Sakakura, 1986, Cell, 47:131-139). We have now investigated the expression of tenascin during embryonic development of the mouse kidney. In this system, mesenchymal cells convert into epithelial cells as a result of a tissue interaction. By immunofluorescence, tenascin could not be found in the mesenchyme until kidney tubule epithelial began to form. It then became detectable around condensates and s-shaped bodies, the early stages of tubulogenesis. In an in vitro culture system, tenascin expression by the mesenchyme is tightly coupled to the de novo formation of epithelial, and does not occur if tubulogenesis is suppressed. The results strongly suggest that the formation of the new epithelium stimulates the expression of tenascin in the nearby mesenchyme. During postnatal development, the expression of tenascin decreases and the spatial distribution changes. In kidneys from adult mice, no tenascin can be found in the cortex, but interspersed patches of staining are visible in the medullary stroma. The results strongly support the view that tenascin is involved in epithelial-mesenchymal interactions. It could therefore be crucial for embryonic development.  相似文献   

11.
12.
13.
14.
The production of extracellular matrix components such as laminin, Type IV collagen, fibronectin, and tenascin during the formation of basement membrane in cultured epidermis-dermis recombinant skin of 13-day-old chick embryo was analyzed immunohistochemically. The epidermis and dermis were separated from each other by treatment with EDTA and/or dispase. The basal lamina of the basement membrane was thus removed from both epidermis and dermis. The isolated epidermis was overlaid onto the isolated dermis, i.e., recombined, and then cultured for 1-7 days in a chemically defined medium (BGJb) on a Millipore filter. Immunofluorescence labeling was used for light microscopy and HRP or colloidal gold labeling for electron microscopy. In specimens from 2-day cultures, positive sites of anti-laminin and anti-fibronectin reaction were observed light microscopically as patches which, at the electron microscopic level, corresponded to fragments of the basal lamina located immediately beneath and in the vicinity of the attachment plaques of the hemidesmosomes. The staining pattern became continuous 7 days after recombination. Fluorescence labeling of laminin and fibronectin appeared somewhat earlier than that of Type IV collagen and tenascin. All of the four components were found localized primarily in the basal lamina. Furthermore, fibronectin and tenascin were also distributed in the extracellular matrix of the dermis. The expression of tenascin, which does not exist in the basement membrane of 13-day-old intact embryonic skin, was induced in vitro. These results suggest that hemidesmosomes may play an important role in the reconstruction of the basement membrane and that various components of the basement membrane appeared at different times during the reconstruction.  相似文献   

15.
The distribution of two basement membrane (BM) components, laminin (LN) and type IV collagen (COLL IV), during acino-tubular morphogenesis of rat submandibular gland was examined immunohistochemically to determine the role of BM in the development of acino-tubular structures. On day 14 of gestation, LN could be found only in the BM separating an undifferentiated cell cluster of gland epithelium from surrounding mesenchyme. However, during a short period through days 15 to 17, LN was detected not only in the BM but also in intracellular vesicles of the cells of the terminal cluster. Immunoelectron microscopy showed the intracellular immunoreactive sites to be rough endoplasmic reticulum, indicating that active LN synthesis occurs in the cells of the terminal cluster. Intracellular immunostaining of LN disappeared completely on day 19 with the development of simple epithelium from the cell cluster, even though BM remained reactive. COLL IV also was accumulated in the intracellular vesicles of terminal cluster cells on day 16 of gestation but not on day 19. These results indicate that synthesis of certain BM components is transiently stimulated in gland epithelium before the formation of simple epithelial structure, and that these components are significantly involved in morphogenesis of the submandibular gland.  相似文献   

16.
Proteolytic digests of liver plasma-cell membranes from the cow were fractionated to yield two homogeneous glycopeptides and a third preparation about 92% pure. The composition of the two homogeneous glycopeptides made it clear that they were derived from basement membrane material rather than the plasma membrane. Ruminants are unusual in having large amounts of basement membrane in the liver while other animals generally have little or none. Both basement-membrane-derived glycopeptides contained a glucosyl galactosyl disaccharide linked to hydroxylysine, the smaller one contained no other sugar structure but the larger one contained in addition an acidic heterosaccharide, the two chains probably being linked separately to the same molecule. Smith degradation and beta-elimination operations show that this heterosaccharide has an inner structure containing mannose and hexosamine, with the sugars galactose, N-glycollyl-neuraminic acid and fucose situated more peripherally. The amino-acid-heterosaccharide linkage is alkali stable. The third glycopeptide, which may be plasma-membrane-derived, differs from the heterosaccharide described above in that it contains no glucose and contains some O-seryl and O-threonyl amino-acid--sugar linkage. It, too, has a periodate-resistant structure of hexosamine and mannose.  相似文献   

17.
Abstract. BM-90 is a novel glycoprotein initially isolated from the extracellular matrix of a mouse tumor. We here studied the expression of BM-90 during embryonic development of the mouse heart and compared its expression pattern with that of tenascin and laminin. Distribution was studied by immunofluorescence using antibodies specifically raised against mouse BM-90, laminin and tenascin. Some expression of BM-90 was seen in myocardial basement membranes at early developmental stages, but expression abruptly decreased from these sites at day 12 of embryogenesis. Laminin B chains were also found in the muscle basement membranes early but did not decrease with advancing development. The most striking observation was the markedly enriched expression of BM-90 in the endocardial cushion tissue (ECT). The ECT is derived from mesenchymal cells converted from endothelium and they will form the cardiac valves and septa. In the ECT, BM-90 showed considerable co-distribution with tenascin, but tenascin expression was more focal and did not mark all areas of the ECT. Northern blot data show that BM-90 and tenascin were produced by the developing heart. With antibodies detecting A, B1 and B2 chains of mouse laminin, no immunoreactivity was seen in the ECT. Our data thus show clear-cut differences in the molecular composition of the ECT and muscle basement membranes in the developing heart. The focal expression of BM-90 in the ECT suggests that BM-90 could be involved in epithelial-mesenchymal transitions.  相似文献   

18.
The distribution of tenascin, an extracellular matrix glycoprotein, and that of actin filaments were studied in the developing urethra of mouse embryos by antitenascin immunofluorescent and rhodamine-phalloidin staining. Tenascin appeared transiently in the urethral mesenchyme at the site of active morphogenesis in which the urethral epithelium separated from the surface epithelia of the glans and prepuce, being tubular, and the bilateral mesenchymes lining the preexisting urethral epithelium were seamed together in the ventral side of the tubular urethra immediately after the epithelial separation. The spatially and temporally restricted distribution of tenascin corresponded well to that of mesenchymal cells which possessed many actin filaments. These observations suggest that tenascin is involved in the cytoskeletal organization of mesenchymal cells in the active phase of morphogenesis.  相似文献   

19.
In diabetes, certain basement membranes become thicker yet more porous than normal. To identify possible changes in the basement membrane, we have grown the Engelbreth-Holm-Swarm tumor, a tissue that produces quantities of basement membrane in normal mice and in streptozotocin-treated, insulin-deficient, diabetic mice. The level of laminin, a basement membrane-specific glycoprotein, and the level of total protein were slightly elevated in the diabetic tissue. In contrast, the level of the basement membrane specific heparan sulfate proteoglycan was only 20% of control. The synthesis of this proteoglycan was also reduced in the diabetic animals, while the synthesis of other proteoglycans by tissues such as cartilage was normal. The synthesis of the heparan sulfate proteoglycan in diabetic animals was inversely related to plasma glucose levels showing an abrupt decrease above the normal range of plasma glucose. Insulin restored synthesis to normal but this required doses of insulin that maintained plasma glucose at normal levels for several hours. Since the heparan sulfate proteoglycan in the basement membrane restricts passage of proteins, its absence could account for the increased porosity of basement membrane in diabetes. A compensatory synthesis of other components could lead to their increased deposition and the accumulation of basement membrane in diabetes.  相似文献   

20.
We have investigated the movement of green fluorescent protein-tagged neurofilaments at the distal ends of growing axons by using time-lapse fluorescence imaging. The filaments moved in a rapid, infrequent, and asynchronous manner in either an anterograde or retrograde direction (60% anterograde, 40% retrograde). Most of the anterograde filaments entered the growth cone and most of the retrograde filaments originated in the growth cone. In a small number of cases we were able to observe neurofilaments reverse direction, and all of these reversals occurred in or close to the growth cone. We conclude that neurofilament polymers are delivered rapidly and infrequently to the tips of growing axons and that some of these polymers reverse direction in the growth cone and move back into the axon. We propose that 1) growth cones are a preferential site of neurofilament reversal in distal axons, 2) most retrograde neurofilaments in distal axons originate by reversal of anterograde filaments in the growth cone, 3) those anterograde filaments that do not reverse direction are recruited to form the neurofilament cytoskeleton of the newly forming axon, and 4) the net delivery of neurofilament polymers to growth cones may be controlled by regulating the reversal frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号