首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Mesodinium rubrum (Lohman) (=Myrionecta rubra Jankowsky) swims backwards in jumps of short duration interspersed by longer periods of rest. Cells attain a velocity of up to 1.2 cm s-1 during jumps and this is probably a speed record for ciliates. The ciliate carries long cirri that serve as mechanoreceptors and for orientating the cell at the initiation of jumps, while the ciliary rows on the posterior part of the cell are responsible for propulsion. The cirri are sensitive to shear so that they can orientate themselves against the current in a siphon flow (such as generated by filter-feeding copepods). Mesodinium cells do not reorientate their body axis during sinking, but they reorientate their direction during the initiation of jumps so that they always tend to move upwards. Because the cells sink between jumps they can regulate their vertical position by modulation of the frequency of jumps. The cells' tendency to drift vertically up or down is light dependent. The jumps are so rapid that these phototrophic organisms can enhance their uptake of dissolved mineral nutrients beyond the limitation of molecular diffusion.  相似文献   

2.
ABSTRACT. The interdependency of Dinophysis spp., Mesodinium rubrum and Teleaulax spp. has occupied scientists in molecular and ecological domains in recent years. Current knowledge about the predator–prey relationships is based on laboratory investigations. Records on interactions in nature are limited, even though it is known that Dinophysis acuminata and M. rubrum form population maxima in thin layers associated with thermal stratification. We studied the vertical co‐occurrence of these taxa in a stratified coastal inlet in Åland, in the Northern Baltic Sea, SW Finland. Vertical profiles were sampled monthly in the summer of 2008 and observations on diurnal migrational patterns of all species were conducted in September 2008. The population maximum of D. acuminata was almost totally confined to thin layers where the depth maximum of M. rubrum was present. However, this pattern was only observed early in the morning or at noon. The population maxima of M. rubrum and Teleaulax spp. overlapped at noon. Dinophysis acuminata and Teleaulax spp. were restricted to the upper 9 m but M. rubrum was found down to 20 m depth. This study offers circumstantial evidence for the interdependency between the three taxa in nature.  相似文献   

3.
Mesodinium rubrum (=Myrionecta rubra), a marine ciliate, acquires plastids, mitochondria, and nuclei from cryptophyte algae. Using a strain of M. rubrum isolated from McMurdo Sound, Antarctica, we investigated the photoacclimation potential of this trophically unique organism at a range of low irradiance levels. The compensation growth irradiance for M. rubrum was 0.5 μmol quanta · m−2 · s−1, and growth rate saturated at ∼20 μmol quanta · m−2 · s−1. The strain displayed trends in photosynthetic efficiency and pigment content characteristic of marine phototrophs. Maximum chl a–specific photosynthetic rates were an order of magnitude slower than temperate strains, while growth rates were half as large, suggesting that a thermal limit to enzyme kinetics produces a fundamental limit to cell function. M. rubrum acclimates to light‐ and temperature‐limited polar conditions and closely regulates photosynthesis in its cryptophyte organelles. By acquiring and maintaining physiologically viable, plastic plastids, M. rubrum establishes a selective advantage over purely heterotrophic ciliates but reduces competition with other phototrophs by exploiting a very low‐light niche.  相似文献   

4.
The cryptophyte Teleaulax amphioxeia is a source of plastids for the ciliate Mesodinium rubrum and both organisms are members of the trophic chain of several species of Dinophysis. It is important to better understand the ecology of organisms at the first trophic levels before assessing the impact of principal factors of global change on Dinophysis spp. Therefore, combined effects of temperature, irradiance, and pH on growth rate, photosynthetic activity, and pigment content of a temperate strain of T. amphioxeia were studied using a full factorial design (central composite design 23*) in 17 individually controlled bioreactors. The derived model predicted an optimal growth rate of T. amphioxeia at a light intensity of 400 μmol photons · m−2 · s−1, more acidic pH (7.6) than the current average and a temperature of 17.6°C. An interaction between temperature and irradiance on growth was also found, while pH did not have any significant effect. Subsequently, to investigate potential impacts of prey quality and quantity on the physiology of the predator, M. rubrum was fed two separate prey: predator ratios with cultures of T. amphioxeia previously acclimated at two different light intensities (100 and 400 μmol photons · m−2 s−1). M. rubrum growth appeared to be significantly dependent on prey quantity while effect of prey quality was not observed. This multi-parametric study indicated a high potential for a significant increase of T. amphioxeia in future climate conditions but to what extent this would lead to increased occurrences of Mesodinium spp. and Dinophysis spp. should be further investigated.  相似文献   

5.
6.
Mesodinium rubrum Lohmann is a mixotrophic ciliate and one of the best studied species exhibiting acquired phototrophy. To investigate the fate of cryptophyte organelles in the ciliate subjected to starvation, we conducted ultrastructural studies of a Korean strain of M. cf. rubrum during a 10 week starvation experiments. Ingested cells of the cryptophyte Teleaulax amphioxeia were first enveloped by ciliate membrane, and then prey organelles, including ejectisomes, flagella, basal bodies and flagellar roots, were digested. Over time, prey nuclei protruded into the cytoplasm of the ciliate, their size and volume increased, and their number decreased, suggesting that the cryptophyte nuclei likely fused with each other in the ciliate cytoplasm. At 4 weeks of starvation, M. cf. rubrum cells without cryptophyte nuclei started to appear. At 10 weeks of starvation, only two M. cf. rubrum cells still possessing a cryptophyte nucleus had relatively intact chloroplast-mitochondria complexes (CMCs), while M. cf. rubrum cells without cryptophyte nuclei had a few damaged CMCs. This is the first ultrastructural study demonstrating that cryptophyte nuclei undergo a dramatic change inside M. cf. rubrum in terms of size, shape, and number following their acquisition.  相似文献   

7.
Our objective is to describe a multi-layer model of C3-canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus-Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model is that stomatal conductance (gs) is varied so that daily carbon uptake per unit of foliar nitrogen is maximized within the limitations of canopy water availability. The hydraulic system is modelled as an analogue to simple electrical circuits in parallel, including a separate soil hydraulic resistance, plant resistance and plant capacitance for each canopy layer. Stomatal opening is initially controlled to conserve plant water stores and delay the onset of water stress. Stomatal closure at a threshold minimum leaf water potential prevents xylem cavitation and controls the maximum rate of water flux through the hydraulic system. We show a strong correlation between predicted hourly CO2 exchange rate (r2= 0.86) and LE (r2= 0.87) with independent whole-forest measurements made by the eddy correlation method during the summer of 1992. Our theoretical derivation shows that observed relationships between CO2 assimilation and LE flux can be explained on the basis of stomatal behaviour optimizing carbon gain, and provides an explicit link between canopy structure, soil properties, atmospheric conditions and stomatal conductance.  相似文献   

8.
A capture mechanism observed in a culture of the dinoflagellate Dinophysis acuta when preying on the ciliate Mesodinium rubrum (also sometimes referred to as Myrionecta rubra) is described. The dinoflagellate released cohesive clumps of mucilage into the culture media. When M. rubrum cells came into contact with this mucilage, they were immediately immobilized, but remained alive for a short period of time. Observations of D. acuta cells ‘visiting and probing’ trapped M. rubrum cells were made and at a critical point D. acuta cells removed individual M. rubrum cells from the mucus to swim away with them. The removal of M. rubrum from the mucus coincided with the cells losing all their cilia and becoming swollen, presumably signifying the death of the cell. These changes may enable the D. acuta peduncle to penetrate the ciliate cell cortex. It is hypothesized that toxins produced by D. acuta play a role in the immobilization process within the mucilage trap.  相似文献   

9.
The proton pumping activity of the tonoplast (vacuolar membrane) H+-ATPase and H+-pyrophosphatase (H+-PPase) has been studied on a tonoplast-enriched microsomal fraction and on intact vacuoles isolated from a heterotrophic cell suspension culture of Chenopodium rubrum L. in the presence of the lysosphingolipids D-sphingosine, psychosine (galactosylsphingosine) and lysosulfatide (sulfogalactosyl-sphingosine). Sphingosine strongly stimulates (Ka= 0.16 μ M ) the PPase activity, assayed both as ΔpH formation across the tonoplast vesicle membrane, and as reversible clamp current measured by the whole-vacuolar mode of the patch-clamp technique. Psychosine showed a minor, and lysosulfatide no stimulatory effect. No effect upon the ATPase activity has been observed. No sphingosine-induced change could be observed in the affinity of the PPase for its substrate (apparent Km= 10 μ M MgPPi). We tentatively conclude that sphingosine, which is known as a potent inhibitor of the protein kinase C in animal cells, may be a regulator of the plant vacuolar PPase.  相似文献   

10.
Hydrolysis of native (amorphous) polyhydroxybutyrate (nPHB) granules isolated from different sources by soluble PHB depolymerase of Rhodospirillum rubrum in vitro requires the presence of a heat-stable compound (activator). The activator was purified and was resistant against various physical and chemical stresses such as heat (up to 130 degrees C), pH 1-12, dryness, oxidation by H2O2, reducing and denaturing compounds (2-mercaptoethanol, 5 M guanidinium-HCl) and many solvents including phenol/chloroform. The activator coding gene was identified by N-terminal sequencing of the purified protein, and the deduced protein showed significant homology to magnetosome-associated protein (Mms16) of magnetotactic bacteria. Analysis of the activation process in vitro showed that the activator acts on nPHB granules but not on the depolymerase. The effect of the activator could be mimicked by pretreatment of nPHB granules with trypsin or other proteases but protease activity of the purified activator was not detected. Evidence is shown that different mechanisms were responsible for activation of nPHB by trypsin and activator, respectively. PHB granule-associated protein (PhaP) of Ralstonia eutropha nPHB granules were cleaved by trypsin but no cleavage occurred after activator treatment. Hydrolysis of artificial protein-free PHB granules coated with negatively charged detergents (sodium dodecyl sulfate (SDS), cholate but not cetyltrimethyl-ammonium bromide (CTAB)) did not require activation and confirmed that surface layer proteins of nPHB granules are the targets of the activator rather than lipids. All experimental data are in agreement with the assumption that trypsin and the activator enable the PHB depolymerase to find and to bind to the polymer surface: trypsin by removing a portion of proteins from the polymer surface, the activator by modifying the surface structure in a not yet understood manner presumably by interaction with phasins of the proteinous surface layer of nPHB.  相似文献   

11.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

12.
During the summer of 1992, growth and some physiological parameters of four native plant species occurring in a coastal grassland in The Netherlands, were studied after reduction of solar UV irradiance using different cut-off filters. Biomass production, morphology and photosynthesis of all species tested were unaffected by the different treatments. Litter production of Plantago lanceolata was increased in the absence of the total UV waveband, indicating a possible role for this waveband in plant senescence. Depletion of the total UV waveband from sunlight resulted in alterations in biomass allocation in Calamagrostis epigeios and Urtica dioica while no changes were observed in P. Ianceolata and Verbascum thapsus. In C. epigeios an increase in the specific leaf area was observed, whereas in U. dioica root weight per total plant weight was decreased resulting in an increase in the shoot/root ratio. Both photosynthetic and UV-absorbing pigment concentrations were altered by the different filter applications. When compared to control plants receiving full sunlight, depletion of UV-B resulted in a significant increase in chlorophyll concentration in U. dioica leaves, this however did not affect photosynthetic rate. The presence of UV-B radiation enhanced the UV-absorbance of leaf extracts of all species except P. lanceolata. Optical characteristics of the leaves were also changed. Both the quantity ( P. lanceolata and U. dioica ) and the quality (all species) of radiation transmitted by the leaves was affected by the different treatments.  相似文献   

13.
1. The inhibition by antimycin A of the cyclic electron transfer has been studied in chromatophores from Rhodopseudomonas sphaeroides Ga following an approach based on the analysis of the relaxation kinetics of the reaction center optical changes in pulsed light. The recovery kinetics of the bacteriochlorophyll redox state have been found to be clearly biphasic. The half-times of the fast phase (13 ms) and slow phase (about 400 ms) were not modified by antimycin in a range of concentrations from 0.1 to 9 μM. On the other hand the percentage extent of the fast phase, which reflects the rate of the cyclic electron transfer, was monotonically decreased by increasing concentrations of the inhibitor. This indicates that antimycin decreases progressively the fraction of the photosynthetic units, active in cyclic electron transfer. 2. The ATP yield per flash observed under conditions of controlled inhibition of electron flow was strongly dependent upon the amount of active redox cycles. On the other hand, the amplitude of the carotenoid band shift, which has been demonstrated unequivocally to be correlated to the ATP yield per flash in uninhibited chromatophores, was not affected by antimycin up to a 40% inhibition of electron flow. 3. The effect of a progressive limitation by DCCD in the number of active ATP synthetase complexes on flash-induced phosphorylation has been examined. The decrease in ATP yield observed over a wide range of flash frequencies is related simply to the ATPase activity and to phosphorylation in continuous light, irrespective of the value of the membrane potential, which appears to be stabilized by this inhibitor. 4. As a whole, the results obtained at low concentrations of antimycin and under conditions of partial inhibition by DCCD evidence a localized coupling between the redox reactions and phosphorylation.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号