首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
运用丙酮浸漬干燥、磷酸盐缓冲液提取、低温离心、硫酸铵沉淀、DEAE-Sephadex(A-50)、Sephadex(G-75)和DEAE-celluse(DE-52)层析等方法从苹果中分离获得一种新的含铜酶蛋白,该酶被命名为多酚氧化酶Ⅱ(polyphenoloxidaseⅡ,PPOⅡ),纯化倍数是215,纯化收率是23%。PAGE、SDS-PAGE和MALDI-TOF等技术用于测定所获的酶的纯度和分子量。在PAGE和SDS-PAGE均显示一条带,表明PPOⅡ只由一个亚基组成,且已达到单一组分(MALDI-TOF的结果更证实了这一点)。SDS-PAGE和MALDI-TOF的结果都表明PPO的分子量为38204Da。pH值对酶活性和稳定性研究的结果显示,从pH值4.0~7.0随着pH值的增加,酶活性也不断增加;从pH值7.0~11.0,酶活性不断降低。PPOⅡ的最适pH值为6.6最适温度为30℃。  相似文献   

2.
富士苹果多酚氧化酶特性研究   总被引:19,自引:0,他引:19  
本文从富士苹果中提取和部分纯化多酚氧化酶,并对其特性进行研究。以邻苯二酚为作用底物,该酶最适pH为50,在pH50~80范围内有较高的稳定性。最适温度为30℃,在60℃以上迅速失活。该酶对不同的酚类物质表现出不同的底物专一性,由高至低的趋势依次为邻苯二酚、焦性没食子酸、DL-多巴、酪氨酸,其中对酪氨酸的活力为零。浓度为04mmol/L的VC、L-半胱氨酸及浓度为03mmol/L的亚硫酸氢钠,可完全抑制该酶活性。  相似文献   

3.
目的:选择不同的分离、纯化步骤并比对分析,筛选出纯化烟草中多酚氧化酶(PPO)的优化组合方案。方法:采用分段盐析、DEAE-SepharoseFastflow和SephadexG-150柱层析纯化PPO,通过测定和比较酶活性筛选最佳条件。结果:确定了最佳盐析浓度(40%)和柱层析条件,SDS-PAGE、FPLC以及动力学常数的检测结果表明,纯化出的蛋白质相对分子质量为42000,Km为1.2mmol/L,得到了纯化91倍的烟草多酚氧化酶Ⅱ。结论:优化方案减少了有机溶剂分级沉淀、阳离子交换层析等步骤,使纯化过程大大缩短。  相似文献   

4.
以成熟苹果果实的RNA为模板,经RT—PCR扩增并克隆苹果多酚氧化酶(APPO)长度为710bp的反义、正义基因片段。以副球菌中类胡罗卜素合成有关的(crtW crtY)融合基因片段YYT为间隔区。将APPO反义基因片段、YYT和APPO正义基因片段串联,构成全长为2446bp的DNA并插入到植物双元载体pYPX145中,构成可表达苹果多酚氧化酶双链RNA的植物双元载体pYF7704。以根癌农杆菌介导的叶盘转化法转化苹果栽培品种红富士,通过50mg/L卡那霉素筛选和GUS检测,获得了转基因苹果抗性芽。荧光定量RT—PCR检测结果显示,转基因苹果抗性芽内多酚氧化酶基因的干扰效果达91.69%以上,研究结果证实多酚氧化酶双链RNA干扰在转基因苹果上是可行的。  相似文献   

5.
槐尺蠖多酚氧化酶的纯化及酶学特征   总被引:6,自引:2,他引:6  
经40%饱和度硫酸铵分级沉淀,Sephadex G-100凝胶过滤等步骤,将槐尺蠖Semiothisa cinerearia Bremer et Grey 多酚氧化酶纯化,纯化倍数为6.96倍。该酶对焦性没食子酸,邻苯二酚和L多巴的Km值分别为0.23 mmol/L, 0.48 mmol/L和0.49 mmol/L。多酚氧化酶在pH 7.0,37℃时活性最高,并在40℃以上条件下,随着保温时间的延长酶活力下降。用槲皮苷和硫脲作抑制剂对该酶活性的抑制结果表明,这两种抑制剂分别属于竞争性和非竞争性抑制剂。  相似文献   

6.
本实验选用不同的酶源,通过采用生物酶促氧化的方法制取含量较高的茶黄素粗品。研究表明,在供试的酶源中,对茶黄素的形成与积累的效果依次为:梨子〉茶叶〉苹果,利用梨子PPO制取茶黄素,其含量高达45.727%,制率也高达41.11%。而在供试的茶鲜叶中,苹云较好,槠叶齐次之,在以苹云冷冻叶为酶源制取的茶黄素含量达33.737%,制率达42.22%。  相似文献   

7.
多酚氧化酶及其生理功能   总被引:43,自引:0,他引:43  
就多酚氧化酶的存在和定位,遗传学特性,生理功能,酶活性的影响因素,经济价值等方面近年来研究成果进行了总结。  相似文献   

8.
植物多酚氧化酶的研究进展   总被引:12,自引:0,他引:12  
阐述了多酚氧化酶的分子结构、生物功能、基因表达等方面的研究进展.  相似文献   

9.
莲藕多酚氧化酶同工酶的比较分析   总被引:4,自引:0,他引:4  
采用垂直板聚丙烯酰胺凝胶电泳技术,对同一植株莲藕的不同部位、不同湖区野生莲藕以及不同品种的特定部位的多酚氧化酶(PPO)同工酶进行了分析。结果表明,同一植株莲藕不同部位PPO同工酶带有一定的特异性, 其主要表现在区带数目、迁移位置和区带染色深浅三方面;而不同湖区野生莲藕以及不同品种莲藕,处于同一生长周期、同一部位中的PPO同工酶遗传多样性则较低。  相似文献   

10.
为探讨梨果多酚氧化酶(polyphenol oxidase,PPO)活性变化规律,本研究选取贡梨、酸梨、紫酥梨、香梨、酥梨和皇冠梨6个不同品种的砀山梨果作为实验材料,采用分光光度计法分别测定了梨果的皮、肉和心的多酚氧化酶活性,并对其进行分析。结果表明,紫酥梨皮、香梨肉和香梨心PPO活性最高,分别为19.72AU·g-1·min-1、19.51AU·g-1·min-1和19.30AU·g-1·min-1,酸梨皮、酸梨肉以及皇冠梨心的PPO活性最低,分别只有11.64AU·g-1·min-1、13.39AU·g-1·min-1和6.67AU·g-1·min-1。PPO活性变异及方差分析显示,梨皮PPO活性平均值最高为16.27AU·g-1·min-1,梨心PPO活性平均值最低为13.68AU·g-1·min-1;不同品种梨皮、梨肉、梨心PPO活性变化不一致;不同部位中梨心的PPO活性变异系数最大,达32.23%;不同部位及品种间PPO活性差异不显著。由此可知梨皮可以作为梨果PPO活性改良的目标之一,梨心具有筛选低PPO活性的潜力,皇冠梨梨心可作为选育低PPO活性的种质资源。  相似文献   

11.
12.
Polyphenol oxidase is the enzyme responsible for enzymatic browning in sweetpotato that decreases the commercial value of sweetpotato products. Here we reported the cloning and characterization of a new cDNA encoding PPO from sweetpotato, designated as IbPPO (GeneBank accession number: AY822711). The full-length cDNA of IbPPO is 1984 bp with a 1767 bp open reading frame (ORF) encoding a 588 amino acid polypeptide with a calculated molecular weight of 65.7 kDa and theoretical pI of 6.28. The coding sequence of IbPPO was also directly amplified from the genomic DNA of sweetpotato that demonstrated that IbPPO was an intron-free gene. The computational comparative analysis revealed that IbPPO showed homology to other PPOs of plant origin and contained a 50 amino acid plastidial transit peptide at its N-terminal and the two conserved CuA and CuB copper-binding motifs in the catalytic region of IbPPO. A highly conserved serine-rich motif was firstly found in the transit peptides of plant PPO enzymes. Then the homology based structural modeling of IbPPO showed that IbPPO had the typical structure of PPO: the catalytic copper center was accommodated in a central four-helix bundle located in a hydrophobic pocket close to the surface. Finally, the results of the semiquantitative RT-PCR analysis of IbPPO in different tissues demonstrated that IbPPO could express in all the organs of sweetpotato including mature leaves, young leaves, the stems of mature leaves (petioles), the storage roots, and the veins but at different levels. The highest-level expression of IbPPO was found in the veins, followed by storage roots, young leaves and mature leaves; and the lowest-level expression of IbPPO was found in petioles. The present researches will facilitate the development of antibrown sweetpotato by genetic engineering. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 6, pp. 1006–1012. The article was submitted by the authors in English.  相似文献   

13.
While a long shelf life for fruit products is highly desired, enzymatic browning is the main cause of quality loss in fruits and is therefore a main problem for the food industry. In this study polyphenol oxidase (PPO), the main enzyme responsible for browning was isolated from mamey fruit (Pouteria sapota) and characterized biochemically. Two isoenzymes (PPO 1 and PPO 2) were obtained upon ammonium sulfate precipitation and hydrophobic and ion exchange chromatography; PPO 1 was purified up to 6.6-fold with 0.28% yield, while PPO 2 could not be characterized as enzyme activity was completely lost after 24 h of storage. PPO 1 molecular weight was estimated to be 16.1 and 18 kDa by gel filtration and SDS-PAGE, respectively, indicating that the native state of the PPO 1 is a monomer. The optimum pH for PPO 1 activity was 7. The PPO 1 was determined to be maximum thermally stable up to 35 °C. Kinetic constants for PPO 1 were Km = 44 mM and Km = 1.3 mM using catechol and pyrogallol as substrate, respectively. The best substrates for PPO 1 were pyrogallol, 4-methylcatechol and catechol, while ascorbic acid and sodium metabisulfite were the most effective inhibitors.  相似文献   

14.
Oxalate oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide with the reduction of molecular oxygen to hydrogen peroxide. Oxalate oxidase found its application in clinical assay for oxalate in blood and urine. This study describes the purification and biochemical characterization of an oxalate oxidase produced from an endophytic bacterium, Ochrobactrum intermedium CL6. The cell-free fermentation broth was subjected to two-step enzyme purification, which resulted in a 58.74-fold purification with 83% recovery. Specific activity of the final purified enzyme was 26.78 U?mg?1 protein. The enzyme displayed an optimum pH and temperature of 3.8 and 80°C, respectively, and high stability at 4–80°C for 6?h. The enzymatic activity was not influenced by metal ions and chemical agents (K+, Na+, Zn2+, Fe3+, Mn2+, Mg2+, glucose, urea, lactate) commonly found in serum and urine, with Cu2+ being the exception. The enzyme appears to be a metalloprotein stimulated by Ca2+ and Fe2+. Its Km and Kcat for oxalate were found to be 0.45?mM and 85?s?1, respectively. This enzyme is the only known oxalate oxidase which did not show substrate inhibition up to a substrate concentration of 50?mM. Thermostability, kinetic properties, and the absence of substrate inhibition make this enzyme an ideal candidate for clinical applications.  相似文献   

15.
In a comparison of the polyphenol oxidase activity of various species of yam tubers the greatest enzyme activity was found in D. bulbifera. The enzyme was purified from acetone powder extracts of this plant. Ammonium sulphate fractionation, followed by ion exchange chromatography and gel filtration gave 22-fold purification. The final product gave a single band on polyacrylamide disc gel electrophoresis. The purified enzyme showed activity towards catechol, pyrogallol and dl-β-3,4-dihydroxyphenylalanine (dl-DOPA) and had a MW 115000 ± 2000. It was characterized by response to various inhibitors. β-Mercaptoethanol, dithioerythritol, l-cysteine, sodium metabisulphite and KCN inhibited strongly.  相似文献   

16.
Oxalate oxidase (OxO, EC 1.2.3.4.) was purified to homogeneity from wheat (Triticum aestivum) seedlings by sequential thermal treatment, ultrafiltration, Sephadex G-100 gel filtration and affinity chromatography with concanavalin A. The enzyme was purified 66.11-fold with a recovery of 21.97%. It showed a subunit molecular mass of 32.6 kDa on SDS-PAGE and a native molecular mass of 170 kDa on Sephadex G-150 filtration, suggesting that it is a pentamer. The wheat OxO had a maximum activity at pH 3.5. Its K m for oxalate was 0.21 mM. Chemical modification revealed that cysteine, lysine and carboxylate residues were essential for OxO activity, whereas arginine, serine, threonine and tryptophane residues were not essential.  相似文献   

17.
为明确黑芝麻多酚氧化酶的酶学性质,利用大肠杆菌Escherichia coli原核表达了黑芝麻多酚氧化酶(Black sesame polyphenol oxidase,BsPPO).将合成的基因构建至pMAL-c5x载体,并在大肠杆菌中进行表达,对重组蛋白进行分离纯化及融合标签切除,获得的BsPPO蛋白用于酶学性质探...  相似文献   

18.
烟草中多酚氧化酶(PPO)的特征   总被引:3,自引:0,他引:3  
烟草中的多酚氧化酶介导的褐变会影响烟叶和烟丝的色泽和内在质量,因此对其特性的研究,以及活性的控制成为多年来的研究热点。本文从其生物发生模型、分子结构、生物化学和光谱学特征与植物抗病和机械损伤的关系,多酚氧化酶的抑制、多酚氧化酶的应用等方面着手,对近几年来烟草中PPO研究的最新成果进行总结和回顾,对一些有争议的问题进行了探讨,并对未来PPO研究的方向和领域进行了展望。  相似文献   

19.
Polyphenol oxidase plays a key role in plant defense systems. We report the first-time purification of polyphenol oxidase (PPO 1.14.18.1) from fresh leaves of tobacco (Nicotiana tabacum) using acetone powder, ammonium sulfate precipitation, and column chromatography with DEAE-Sephadex A-50, CM-Sephadex C-50, and Sephadex G-75. PPO I was purified approximately 71-fold (3200 U/mg). The MALDI-TOF-MS spectrum showed that the enzyme was purified to a pure protein with a molecular weight of 35700 Da. The optimum pH of PPO I was 7, the optimum temperature was 40°C, and the Km value was 6.8 mM using catechol as the substrate at pH 6.5 and with 0.05 M H3PO4−NaOH buffer. The maximum emission peak of PPO I was 339 nm with 16 nm of blue-shifted compared with 355 nm of free tryptophan. The UV/VIS spectra and the absence of an EPR signal are indicative of type-3 coppers, but not type-1 or type-2 coppers. PPO I and mushroom PPO have the same active center for a pair of coupled antiferromagnetic copper ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号