首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensation of chromatin: role of multivalent cations   总被引:4,自引:0,他引:4  
D Sen  D M Crothers 《Biochemistry》1986,25(7):1495-1503
We have used electric dichroism to investigate the influence of multivalent cations upon the compaction of chicken erythrocyte chromatin from the unfolded, 10-nm fiber to the 30-nm solenoid and subsequent aggregation. The pattern of condensation, which consists of compaction plus aggregation, is found to be strikingly similar for a variety of cations of differing charge, including the physiologically important polyamines spermine and spermidine. With a few exceptions such as Cu2+ and Gd3+, an optimally compacted fiber with reproducible hydrodynamic properties is produced prior to the onset of aggregation. We report the concentrations of di-, tri-, and tetravalent cations required for optimal condensation; in addition, for tri- and tetravalent cations, we were able to estimate the extent of charge neutralization produced by their binding to the optimally compacted fiber. The results show that the multivalent ion concentration required for optimal compaction decreases as cationic charge increases. In addition, the effect of a mixture of dilute mono- and multivalent cations on chromatin condensation is synergistic, rather than competitive as has been found for the multivalent cation induced condensation of DNA or the B----Z conformational transition. A simple calculation indicates that the entropy of ion uptake in chromatin condensation is surprisingly constant for a range of ionic conditions; this factor may be a dominant one in determining the folding equilibrium.  相似文献   

2.
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.  相似文献   

3.
Grigoryev SA 《FEBS letters》2004,564(1-2):4-8
Interphase eukaryotic nuclei contain diffuse euchromatin and condensed heterochromatin. Current textbook models suggest that chromatin condensation occurs via accordion-type compaction of nucleosome zigzag chains. Recent studies have revealed several structural aspects that distinguish the highly compact state of condensed heterochromatin. These include an extensive lateral self-association of chromatin fibers, prominent nucleosome linker 'stems', and special protein factors that promote chromatin self-association. Here I review the molecular and structural determinants of chromatin compaction and discuss how heterochromatin spreading may be mediated by lateral self-association of zigzag nucleosome arrays.  相似文献   

4.
Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.  相似文献   

5.
E2F-associated chromatin modifiers and cell cycle control   总被引:3,自引:0,他引:3  
The E2F family of proteins was identified on the basis of its role in promoting the G0 to S phase transition. Research over the past several years has unveiled considerable complexity within the family, with numerous studies pointing to delegation of function for distinct family members. More recent studies highlighted in this review have expanded this picture, suggesting ways in which E2F target gene expression is refined during cell cycle progression by facilitating the acquisition of promoter-specific histone modifications. E2F associated co-activators promote activating histone marks while recruitment of co-repressors associated with E2Fs and the pRB family leads to accretion of inhibitory histone modifications that provoke chromatin compaction.  相似文献   

6.
Protozoa of the family Trypanosomatidae are pathogenic agents of human and animal diseases. Fine structure, compaction pattern, and histone content of the soluble chromatin were investigated in procyclic forms of Trypanosoma cruzi (Chagas disease, S. America) and T. brucei brucei (Nagana disease, Africa) in comparison with rat liver chromatin. At low ionic strength chromatin was present as nucleosome filaments. Condensation into compact fibers (solenoid) was complete for rat chromatin at 100 mM salt concentration while chromatin of T. cruzi showed less condensation (tangle formation), and that of T.b. brucei did barely condense under identical experimental conditions. In general, the nucleosomes of trypanosomes, especially T.b. brucei, seemed to be less regularly arranged than those of the higher eukaryote. Addition of histone H1-containing fractions of rat liver chromatin increased the compaction of T. cruzi chromatin but had no influence on T.b. brucei chromatin. SDS-polyacrylamide gel electrophoresis revealed histone H1 and the 4 core histones in rat liver chromatin. Neither in T. cruzi nor T.b. brucei were proteins identical to rat histone H1 present. Differences existed also in molecular weight of core histones between rat and trypanosomes, as well as between T. cruzi and T.b. brucei. These differences might explain species-specific differences in the fine structural organization and compaction pattern of the chromatin of the rat, T. cruzi, and T.b. brucei.  相似文献   

7.
8.
9.
Tumor suppressor pRb2/p130 gene belongs to the retinoblastoma (Rb) gene family, which also includes pRb/p105 and pRb/p107. The members of the Rb gene family have attracted a great deal of interest because of their essential role in regulating cell cycle and, consequently, cell proliferation. This mini review discusses the potential therapeutic applications both of pRb2/p130 and its derived product Spa310 spacer domain in cancer treatment.  相似文献   

10.
In this report, we have examined the requirement for the retinoblastoma (Rb) gene family in neuronal determination with a focus on the developing neocortex. To determine whether pRb is required for neuronal determination in vivo, we crossed the Rb−/− mice with transgenic mice expressing β-galactosidase from the early, panneuronal Tα1 α-tubulin promoter (Tα1:nlacZ). In E12.5 Rb−/− embryos, the Tα1:nlacZ transgene was robustly expressed throughout the developing nervous system. However, by E14.5, there were perturbations in Tα1:nlacZ expression throughout the nervous system, including deficits in the forebrain and retina. To more precisely define the temporal requirement for pRb in neuronal determination, we functionally ablated the pRb family in wild-type cortical progenitor cells that undergo the transition to postmitotic neurons in vitro by expression of a mutant adenovirus E1A protein. These studies revealed that induction of Tα1:nlacZ did not require proteins of the pRb family. However, in their absence, determined, Tα1:nlacZ-positive cortical neurons underwent apoptosis, presumably as a consequence of “mixed signals” deriving from their inability to undergo terminal mitosis. In contrast, when the pRb family was ablated in postmitotic cortical neurons, there was no effect on neuronal survival, nor did it cause the postmitotic neurons to reenter the cell cycle. Together, these studies define a critical temporal window of requirement for the pRb family; these proteins are not required for induction of neuronal gene expression or for the maintenance of postmitotic neurons, but are essential for determined neurons to exit the cell cycle and survive.  相似文献   

11.
12.
13.
The structural basis of mitotic condensation of chromosomes is one of the problems of cell biology yet to be elucidated. A variety of approaches have been used to study this problem and a large number of hypotheses have been proposed to explain the different levels of compaction of chromatin. Xenopus egg extracts, now widely used to study various aspects of cell biology, provide a valuable tool to study mitotic condensation of chromosomes. No detailed study has however yet been reported on the submicroscopic organization of condensed chromosomes in vitro in egg extracts. We present here the results of our electron microscopic studies on the organization of condensed chromosomes in vitro, using demembranated sperm nuclei and mitotic (CSF-arrested) extracts of Xenopus laevis eggs, clarified by high speed centrifugation. Upon introduction of sperm nuclei in egg extracts, the nuclei swell and the chromatin undergoes a rapid decondensation; at this stage the chromatin is formed of 10 nm fibrils. After longer incubation, the chromatin condenses, and by 2 h chromosomal structures can be visualized by staining with DAPI or Hoechst 33258. Our results on the organization of chromosomes in different stages of condensation are discussed in relation to the different hypotheses proposed to explain the process of mitotic condensation of chromosomes. Finally, this study demonstrates the feasibility of high-resolution analysis of the process of chromosome condensation.  相似文献   

14.
The organization and the mechanisms of condensation of mitotic chromosomes remain unsolved despite many decades of efforts. The lack of resolution, tight compaction, and the absence of function-specific chromatin labels have been the key technical obstacles. The correlation between DNA sequence composition and its contribution to the chromosome-scale structure has been suggested before; it is unclear though if all DNA sequences equally participate in intra- or inter-chromatin or DNA-protein interactions that lead to formation of mitotic chromosomes and if their mitotic positions are reproduced radially. Using high-resolution fluorescence microscopy of live or minimally perturbed, fixed chromosomes in Drosophila embryonic cultures or tissues expressing MSL3-GFP fusion protein, we studied positioning of specific MSL3-binding sites. Actively transcribed, dosage compensated Drosophila genes are distributed along the euchromatic arm of the male X chromosome. Several novel features of mitotic chromosomes have been observed. MSL3-GFP is always found at the periphery of mitotic chromosomes, suggesting that active, dosage compensated genes are also found at the periphery of mitotic chromosomes. Furthermore, radial distribution of chromatin loci on mitotic chromosomes was found to be correlated with their functional activity as judged by core histone modifications. Histone modifications specific to active chromatin were found peripheral with respect to silent chromatin. MSL3-GFP-labeled chromatin loci become peripheral starting in late prophase. In early prophase, dosage compensated chromatin regions traverse the entire width of chromosomes. These findings suggest large-scale internal rearrangements within chromosomes during the prophase condensation step, arguing against consecutive coiling models. Our results suggest that the organization of mitotic chromosomes is reproducible not only longitudinally, as demonstrated by chromosome-specific banding patterns, but also radially. Specific MSL3-binding sites, the majority of which have been demonstrated earlier to be dosage compensated DNA sequences, located on the X chromosomes, and actively transcribed in interphase, are positioned at the periphery of mitotic chromosomes. This potentially describes a connection between the DNA/protein content of chromatin loci and their contribution to mitotic chromosome structure. Live high-resolution observations of consecutive condensation states in MSL3-GFP expressing cells could provide additional details regarding the condensation mechanisms.  相似文献   

15.
Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome. Remarkably, our studies suggest that the reactive centre loop, a region of the MENT molecule essential for chromatin bridging in vivo and in vitro, is able to mediate formation of a loop-sheet oligomer. These data provide mechanistic insight into chromatin compaction by a non-histone architectural protein and suggest how the structural plasticity of serpins has adapted to mediate physiological, rather than pathogenic, loop-sheet linkages.  相似文献   

16.
17.
Varma H  Skildum AJ  Conrad SE 《PloS one》2007,2(12):e1256
Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER) positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb) family tumor suppressors causes antiestrogen resistance in MCF-7 cells, a widely studied model of estrogen responsive human breast cancers. In this study, we investigate the mechanism by which pRb inactivation leads to antiestrogen resistance. Cdk4 and cdk2 are two key cell cycle regulators that can phosphorylate and inactivate pRb, therefore we tested whether these kinases are required in cells lacking pRb function. pRb family members were inactivated in MCF-7 cells by expressing polyomavirus large tumor antigen (PyLT), and cdk activity was inhibited using the cdk inhibitors p16(INK4A) and p21(Waf1/Cip1). Cdk4 activity was no longer required in cells lacking functional pRb, while cdk2 activity was required for proliferation in both the presence and absence of pRb function. Using inducible PyLT cell lines, we further demonstrated that pRb inactivation leads to increased cyclin A expression, cdk2 activation and proliferation in antiestrogen arrested cells. These results demonstrate that antiestrogens do not inhibit cdk2 activity or proliferation of MCF-7 cells in the absence of pRb family function, and suggest that antiestrogen resistant breast cancer cells resulting from pRb pathway inactivation would be susceptible to therapies that target cdk2.  相似文献   

18.
Simian virus (SV) 40 large T antigen can both induce tumors and inhibit cellular differentiation. It is not clear whether these cellular changes are synonymous, sequential, or distinct responses to the protein. T antigen is known to bind to p53, to the retinoblastoma (Rb) family of tumor suppressor proteins, and to other cellular proteins such as p300 family members. To test whether SV40 large T antigen inhibits cellular differentiation in vivo in the absence of cell cycle induction, we generated transgenic mice that express in the lens a mutant version of the early region of SV40. This mutant, which we term E107KDelta, has a deletion that eliminates synthesis of small t antigen and a point mutation (E107K) that results in loss of the ability to bind to Rb family members. At embryonic day 15.5 (E15.5), the transgenic lenses show dramatic defects in lens fiber cell differentiation. The fiber cells become post-mitotic, but do not elongate properly. The cells show a dramatic reduction in expression of their beta- and gamma-crystallins. Because CBP and p300 are co-activators for crystallin gene expression, we assayed for interactions between E107KDelta and CBP/p300. Our studies demonstrate that cellular differentiation can be inhibited by SV40 large T antigen in the absence of pRb inactivation, and that interaction of large T antigen with CBP/p300 may be enhanced by a mutation that eliminates the binding to pRb.  相似文献   

19.
A variety of treatments with 5-azadeoxycytidine (5-aza-dC) were applied to cultured human lymphocytes during one to four cell cycles. The effect of 5-aza-dC on DNA methylation was studied by using an antibody against 5-methylcytosine on mitotic chromosomes. 5-Azadeoxycytidine is known to induce strong and permanent demethylation of DNA. Unexpectedly complex relationships were observed between DNA methylation status and chromatid/chromosome compaction. The most dramatic alteration of compaction at mitosis was observed when pre-replicative chromosomes had unifilarly demethylated DNA. The compaction of chromosomes was found to depend only partially on the methylation of their DNA at the time of mitosis. Our results suggest that alteration of DNA methylation prevents the synchronization of chromatin compaction, inducing premature (or delayed) chromosome condensation, and that a crucial step is the DNA methylation status of the pre-replicative chromosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号