首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular plasminogen activator (PA) was examined in 3T3 and transformed 3T3 cells under various growth conditions to determine whether expression of this activity changes with the growth state. During exponential growth, SV40 and benzpyrene (BP) transformed 3T3 cells exhibited 3- to 5-fold more intracellular PA activity than untransformed 3T3 cells. This relationship changed as the cells exhausted serum factors and arrested in G1. The specific activity of intracellular PA in cells that have retained a serum-sensitive restriction point in G1 (G0) (3T3 and BP 3T3) increased 200- and 20-fold, respectively, at this time, while the level in cells that have lost most growth control mechanisms (SV3T3) remained constant. At confluency, 3T3 cells had considerably more PA than either of their transformed counterparts. Sparse cultures of 3T3 and BP3T3 cells arrest at G1 following serum depravation, and also accumulate high intracellular PA activity. The addition of serum or purified epidermal growth factor to these cultures initiated cell proliferation and resulted in a rapid, actinomycin D-sensitive loss of this activity. Less than 50% of the original activity remained 30 minutes after growth stimulation. This loss of intracellular PA activity did not appear to result from the presence of serum or cellular inhibitors. Intracellular PA activity remained low following growth stimulation. It increased again as the cells traversed through G1. These findings indicate that intracellular PA activity fluctuates with the growth state of cells, and may be related to the cell cycle. Culture conditions which place cells, whether normal or transformed, in G1 arrest lead to increased intracellular PA, while factors that initiate growth again result in a rapid loss of this activity. This behavior is lacking in cells not subject to density-dependent inhibition of growth. Like many other correlates of transformation, comparison of intracellular PA in normal and transformed cells must be defined in terms of the growth state of the cells in question.  相似文献   

2.
Agglutinability with Concanavalin was studied as function of cell cycle transition in normal and SV40 virus transformed 3T3 cells. In synchronized cultures of normal cells, agglutinbility was high during mitosis and disappeared rapidly. Agglutinability of transformed cells remained high in G1 phase but diminished gradually upon entering S phase and reached minimum in G1 phase. Decreased agglutinability a the end of the cell cycle was also observed in synchronous SV3T3 cultures by a combined technique of haemadsorption and density gradient centrifugation. In normal 3T3 cells, similar variations in agglutin ability during interphase could not be observed.  相似文献   

3.
Summary SV3T3 cells, originally responsive to epidermal growth factor (EGF) and displaying density-dependent inhibition of growth, lose responsiveness to the growth factor after several passages and then proliferate without restriction, but continue to display EGF receptor sites at the cell surface. Proliferation of primary fetal rat hepatocytes is not stimulated by EGF, but cells bind it to an extent comparable to that of responsive 3T3 cells. Therefore presence of EGF receptors does not imply that cells are responsive to the growth factor. The relevance of some growth-factor-induced events for DNA synthesis initiation is dicussed. In various primary and secondary cell cultures, Ca++-levels appear to be involved in controlling cell proliferation. In contrast, in 3T3-4a cells, levels of Ca++ ions are not tightly coupled to DNA synthesis initiation; effects of growth factors are not mediated by extracellular Ca++ ions, but cells have a Ca++-sensitive restriction, point in G1. In various cell types in primary or secondary culture or in 3T3-4a cells, polyamine, levels are not tightly coupled to induction of proliferation. Therefore growth-factor-induced ornithine decarboxylase is not an event essential for DNA synthesis initiation. Normal but not transformed cells have a spermidine/spermine-sensitive restriction point in G1. Although rRNA synthesis appears to be necessary for induction of proliferation, preliminary data obtained by double-beam flow microfluorometry suggest that cellular RNA levels might not affect rate of entry into S phase and, furthermore, that 3T3-4a cells can enter S without accumulating RNA above levels present in quiescent cells. It appears that none of the events induced during the prereplicative phase that have been studied in 3T3 cells are essential for DNA synthesis initiation under normal culture conditions. Presented in the Opening Symposium on Nutritional Factors and Differentiation at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by Research Grants GM 20101, CA 15087, CA 14195, CA 12227 and CA 11176 from the USPHS, and Grant BC-30D from the American Cancer Society.  相似文献   

4.
The effects of ACTH and 8-Br-cAMP on growth and replication of a functional mouse adrenal tumor cell line (Y-1) were investigated. ACTH and 8-Br-cAMP both inhibited DNA synthesis and replication when added to randomly growing cell cultures. ACTH addition and serum deprivation each arrested cells in G1; an additional point of arrest in G2 occurred with 8-Br-cAMP. Cells whose growth was arrested in G1 by ACTH had a significantly larger volume and protein and RNA content compared to cells arrested in G1 by serum deprivation. When ACTH or 8-Br-cAMP was added with serum to cells arrested by serum deprivation, the wave of DNA synthesis and cell division seen with serum was abolished. ACTH and 8-Br-cAMP had no effect on the serum-induced increases in protein and RNA content, rates of leucine incorporation into protein and uridine incorporation into RNA, and RNA polymerase I activity observed in cells during the pre-replicative period. Partial inhibition of the serum-induced increase in uridine transport occurred. ACTH and cAMP do not appear to inhibit replication by generalized negative pleiotypic effects but rather to inhibit the initiation of DNA synthesis more specifically. The ACTH-arrested Y-1 cell resembles an in vivo hypertrophied adrenal cortical cell.  相似文献   

5.
We have demonstrated that confluent monolayers of the mouse fibroblast cell line C3H/10T1/2 (10T1/2) have the ability to cause reversible growth inhibition of cocultured transformed cells. This was first demonstrated for de novo transformed cells and later extended to established cell lines of proven oncogenicity in vivo. This growth inhibition could be increased by growing the 10T1/2 cells to high density in increasing concentrations of serum or by elevating intracellular concentrations of cAMP using inhibitors of phosphodiesterase (PDE). These manipulations, which in cocultures of nontransformed and transformed cells caused complete inhibition of tumor cell growth, had no effect on growth rate or saturation density of either ceil type when cultured alone, demonstrating the cooperative nature of this phenomenon. This cooperation could not be produced by transfer of culture medium, demonstrating the requirement for intimate cell contact. Inhibition of the formation of transformed foci of cells in these mixed cultures was accompanied by a decrease in the incorporation of labeled thymidine into these cultures; the kinetics of this inhibition and recovery suggested a rapidly reversible effect on cell cycle transit times. The potent inhibitor of cAMP PDE, Ro 20-1724 induced dose dependent increases in intracellular cAMP in both nontransformed and in transformed cells. However, at a concentration of 10?4 M Ro 20-1724, which inhibited tumor cell growth in mixed cultures, cAMP was elevated 30-fold in nontransformed versus only 3-fold in transformed cells. The inhibitory effects of PDE inhibitors on tumor growth have been extended to an in vivo model system, utilizing Lewis lung carcinoma cells growing as metastases in the lungs of C57B1 mice. In these mice, inoculated intravenously with a single cell suspension of Lewis lung cells, the formation of lung metastases was dramatically decreased by the twice daily administration of either isobutylmethylxanthine or Ro 20-1724; PDE inhibitors were shown to be active in vitro. The latter compound, which showed highest activity in vitro, was also substantially more potent in vivo as an inhibitor of lung tumor colony formation and doubled the life span of the tumor bearing animals. Cell cycle analysis of lung tumor colonies by the labeled mitosis method showed that both phosphodiesterase inhibitors caused a prolonged G1 phase in the cell cycle but failed to influence other phases. Although detailed analysis of host tissues is not complete, prolonged treatment with these drugs caused no statistically significant weight loss or changes in counts of red or white blood cells indicating a selective growth inhibition of transformed cells at these doses. Studies to determine the mechanism of the cellular communication and the nature of the signal are in progress.  相似文献   

6.
Quiescent SV40 virus transformed 3T3 cells in culture   总被引:6,自引:0,他引:6  
Serum counteracts low nutrient concentrations in the culture medium in SV40 virus transformed 3T3 (SV3T3) cells. The transport of [3H]-leucine into TCA soluble material in SV3T3 cells is stimulated by serum and inhibited by But2-cAMP. When SV3T3 cells are cultured in low leucine concentrations (? 8 × 10?6 M), the cell's morphology is similar to the one of cells incubated in complete medium in the presence of But2-cAMP and cells become quiescent. Cells become arrested throughout the cell cycle. The results suggest that the mechanism by which But2-cAMP inhibits growth of SV3T3 cells is by inhibiting the transport of leucine in SV3T3 cells.  相似文献   

7.
8.
Transport rates of the nonphosphorylated D-glucose analogs 6-deoxy-D-glucose and D-xylose were measured in quiescent and serum-stimulated cultures of mouse 3T3 cells, in SV40-transformed 3T3 cells (SV101), and in a density revertant cell line derived from SV101 (Fl-SV101). Initial rates of both entry and exit of 6-deoxy-D-glucose and D-xylose were more than threefold higher in serum-stimulated 3T3 and in SV101 cells than they were in quiescent 3T3 cells, but transport rates were not higher in the transformed cells (SV101) than they were in serum-stimulated 3T3. Confluent cultures of Fl-SV101 showed lower rates of transport than serum-stimulated Fl-SV101, but not as low as quiescent 3T3 cells. These data confirm previous findings of others with other analogs that glucose transport is one of the cell functions that is depressed when 3T3 cells enter the quiescent G0 state, but emphasize that SV40-transformed 3T3 cells do not show higher activity of the D-glucose carrier than do actively growing 3T3 cells. Thus, enhanced glucose transport appears not to be a specific consequence of transformation, but a reflection of the active growth state of the cell.  相似文献   

9.
cGMP and cAMP concentrations were studied in cultures of two strains of normal human diploid lung fibroblasts, WI38 and KL-2, under various conditions which alter growth rate. Higher levels of cAMP were found in fibroblasts grown in medium with low (0.1 – 1.0%) serum concentration and thus exhibiting a decreased rate of growth. A rise in cAMP also preceded the decreased growth rate when medium was not changed for 4 days or longer (starvation). The reinitiation of cell growth by addition of fresh medium containing the standard 10% serum to either starved or serum-restricted cells was preceded by a rapid drop in cAMP level. Cellular cAMP levels increased to a moderate extent as sparse cultures first increased in density, but did not continue to rise as the culture approached saturation density. cGMP levels were inversely related to cell density: much higher cellular cGMP levels were found at low density than at higher cell density, whether cells were rapidly proliferating under standard growth conditions or had their growth arrested by omission of medium change or restriction of serum. Thus, under these conditions the steady state levels of cGMP appear to be related to cell density rather than rate of cell proliferation. However, a transient but appreciable increase in cGMP did occur upon the addition of fresh medium containing 10% serum to starved or serum-restricted cells, a condition leading to reinitiation of cell proliferation. Smaller but significant increases in cGMP were also evident following routine addition of fresh medium with serum to growing cells fed every other day and following mild EDTA-trypsin treatment of confluent WI38 fibroblasts. Thus, at least dual control mechanisms appear to be involved in the regulation of cGMP levels. Comparison of mid- and late-passage WI38 cells revealed no significant differences either in the levels of cGMP at sparse densities or in the density-dependent change in levels. These results suggest that levels of both cAMP and cGMP are influenced by cell density and also by conditions which alter the rate of cell proliferation.  相似文献   

10.
Both serum factors and protein synthesis are required for normal cell growth. Swiss 3T3 cells require the serum growth factors insulin and EGF (epidermal growth factor) during the initial part of the G1 period, until they pass a restriction point about 2 h before the initiation of DNA synthesis. Concentration of cycloheximide that inhibit protein synthesis by as much as 70% dramatically lengthen the cell cycle before the restriction point, while the cell cycle after the restriction point remains nearly constant. These results are consistent with a model in which labile proteins are required for transit of cells past the serum-sensitive restriction point. The relation of these findings to the growth control of transformed cells is discussed.  相似文献   

11.
Previous studies have shown that the nontransformed AKR-2B mouse embryo derived cell line may growth arrest by two separate mechanisms in the G1 phase of the cell cycle-growth factor deficiency arrest (G0) and low molecular weight nutrient deficiency arrest. An examination of epidermal growth factor (EGF) receptors under the different resting or growth conditions has shown that rapidly growing cells or cells arrested due to growth factor deficiency have the expected amount of 125I-EGF binding with approximately 105 receptors per cell being present in G0 arrested cells. In contrast, cells arrested due to nutrient deficiency show a reduction in 125I-EGF binding to 10--20% of that observed under the other conditions. This effect appears to be due to decreased receptor number and not to a change in the affinity of the receptor. Stimulation of DNA synthesis by nutrient replenishment causes a tenfold increase in EGF binding 20 hours later, with some increase in binding being detectable as early as six hours. The increase in binding is inhibited by cycloheximide and actinomycin D. This suggests that new mRNA synthesis as well as increased protein synthesis is required for the increase in EGF binding.  相似文献   

12.
Phosphatidylinositol (PI) synthesis and its role in controlling the cell cycle has been investigated using fibroblasts and liver cells in culture. PI synthesis as measured by incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material during 0–60 min after serum or growth factor stimulation of serum-starved cells is increased in primary fetal rat liver cells, rat embryo fibroblasts, and 3T3 mouse cells. In contrast, growth stimulation of 3T3 cells and hepatocytes rendered quiescent in G1 by amino acid starvation is not accompanied by increased incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material. This suggests that those cells might be arrested at a different point in G1 than cells arrested by serum depletion. Inhibition of PI synthesis by δ-hexachlorocyclohexane (HCH), a steric analog of myo-inositol, during early times (e.g., 0–4 hr) after growth stimulation, reversibly blocks initiation of DNA synthesis in 3T3 cells. The results support the idea that increased PI synthesis in response to growth stimulation in the cell types studied here is a prerequisite for progression through G1 and subsequent entry into S phase.  相似文献   

13.
There are few data available on cell cycle events that occur when proliferation of normal cells in culture is curtailed due to “natural aging” of the culture conditions. Stathmokinetic and cytofluorometry studies were performed on PHA-stimulated human lymphocyte cultures for eight consecutive days. Cell proliferation peaked on day 5 and then gradually decreased. Percent labeled mitosis curves performed each day demonstrated that, for those cells which progressed to mitosis, the cell cycle time remained constant at 18 ± 1 hour throughout the entire period of culture. However when the fate of all cells pulse-labeled with 3H-thymidine (S phase cells) was followed daily, only 64 ± 5% of labeled cells reached mitosis on day 3 and <20% on day 6. When the growth fraction was estimated by standard methods (with the labeling index) and used to predict future cell counts in the culture, proliferation was greatly overestimated; but after correcting the growth fraction for labeled cells not reaching mitosis, proliferation was accurately predicted by a newly derived “dividing fraction.” Flow cytofluorometry confirmed accumulation of cells in S and G2 + M phases, and mitotic indices ruled out accumulation in M phase. Assessment of non-viable cells with cytofluorometry demonstrated that death occurred in all phases of the cell cycle. We conclude that with increasing age of culture, an increased fraction of cycling PHA-stimulated lymphocytes fail to progress all the way to mitosis and are arrested in S or G2 phases. These observations provide evidence against the existence of a specific “restriction point” in G1 or at the G1/S interface in aging proliferating human lymphocyte cultures, but it remains to be determined whether cells arrested in S or G2 phases retain the capacity to complete the cell cycle in more favorable culture environments.  相似文献   

14.
The status of glyoxalase-I was explored in exponentially growing and G1 arrested temperature sensitive (ts) cell division cycle (cdc) mutants of Saccharomyces cerevisiae. It was observed that the specific activity of this enzyme was correlated with overall growth status. The activity was high in actively growing cells and was low in G1 arrested cells. Specific activities of glyoxalase-I were also low in G1 arrested prolonged stationary phase (PSP) cells of S. cerevisiae and Candida albicans. The activity of glyoxalase-I recovered when G1 arrested S. cerevisiae (ts) cells were allowed to regrow under permissive conditions. Results demonstrate that although glyoxalase-I activity is a good indicator of cell growth status, it is not involved in cell cycle regulation of this eukaryotic organism.  相似文献   

15.
Gangliosides added to culture media reduced both the growth rate and saturation density of SV40-virus transformed and untransformed 3T3 cells. Monosialogangliosides were much more effective than disialogangliosides in inhibiting growth rate. These gangliosides caused little or no cell damage or significant morphological alteration of the individual cells. Trisialoganglioside markedly reduced growth rate but in some experiments also caused cell damage and lysis. The isolated carbohydrate moiety of the ganglioside GGtet1, the sialo-oligosaccharide galactopyranosyl-N-acetyl-galactosaminyl-(N-acetylneuraminyl)-galactosyl-glucose, did not inhibit growth of SV40 3T3 cells in culture. Ceramide alone was also ineffective as a growth inhibitor. However, the tetrahexosyl ceramide derived from the above ganglioside was equally as effective as the parent compound in retarding growth of SV40 3T3 cells. Similarly, mono-, di- and trihexosyl ceramides were also effective in inhibiting growth of these cells. Gangliosides added to the culture media were rapidly accumulated by cells, apparently at the plasma membrane. The accumulated ganglioside was not degraded by the cells. However, the accumulated ganglioside could be distinguished from gangliosides synthesized in vivo by the lability of the former to neuraminidase.  相似文献   

16.
The uptake of ouabain-sensitive 86Rb+ uptake measured at 5 min and the uptake measured at 60 min was 4.5- and 2.7-fold greater respectively for SV40 transformed 3T3 cells compared to 3T3 cells during the late log phase of growth. This uptake, however, varied markedly with cell growth. Ouabain-sensitive 86Rb+ uptake was found to be a sensitive indicator of protein synthesis as measured by total protein content. Cessation of cell growth as measured by total protein content was associated with a decline in ouabain-sensitive 86Rb+ uptake in both cell types. This increased ouabain-sensitive cation transport was reflected in increased levels of (Na+ + K+)-ATPase activity for SV40 3T3 cells, which showed a 2.5-fold increase V but the same Krmm as 3T3 cells.These results are compared with the results of related work. Possible mechanisms for these effects are discussed and how changes in cation transport might be related to alterations in cell growth.  相似文献   

17.
The synthesis of sulfated glycosaminoglycans was analysed in mouse fibroblasts during the transition from exponential growth to quiescent monolayers. 'Normal' Swiss 3T3 fibroblasts were compared with SV40 transformed 3T3, C6, ST1 and HeLa cells. p-Nitrophenyl-beta-D-xyloside, an artificial acceptor for glycosaminoglycans synthesis, was used as a probe. Exponentially growing 'normal' 3T3 cells synthesized both dermatan sulfate and chondroitin 4-sulfate, retaining the latter and releasing the former to the medium. Upon reaching quiescence these cells switched to retention of dermatan sulfate and release of chondroitin 4-sulfate. SV3T3 cells synthesized several fold less sulfated glycosaminoglycans than 'normal' 3T3. Even though SV3T3 cells are able to synthesize dermatan sulfate, they only retained chondroitin 4-sulfate, never switching to retention of dermatan sulfate. These results indicated that the transition from rapidly proliferating to resting G0 state in normal cells is accompanied by a switch from chondroitin-sulfate rich to dermatan-sulfate-rich cells. This switching was not observed with transformed cells, which are unable to enter the G0 state. Phenylxyloside caused a several fold increase in glycosaminoglycans released to the medium in both cell types, but it did not interfere with either growth rate or cell morphology. Particularly the phenylxyloside treatment led to an increase of more than 10-fold in production of dermatan and chondroitin sulfate by SV3T3, C6, ST1 and HeLa cells. This demonstrated that transformed cells have a high capacity for glycosaminoglycan synthesis. Analysis of enzymatic degradation products of glycosaminoglycans, synthesized in the presence of phenylxyloside, by normal and transformed cells, led to the finding of 4- and 6-sulfated iduronic and glucuronic acid-containing disaccharides. This result indicated that the xyloside causes the synthesis of a peculiar chondroitin sulfate/dermatan sulfate, in both normal and transformed cells.  相似文献   

18.
It was shown previously that mouse bone marrow cells transformed by simian virus 40 (SV40) show a reversible cell density-dependent phenotypic transition between the nonmacrophage (rapidly growing) and the macrophage (stationary) states; cells in low-density cultures are in the growing phase, express SV40 T antigen strongly as revealed by immunofluorescence, and lose typical macrophage properties such as immune phagocytosis; whereas cells in high-density cultures are in the stationary (nongrowing) phase, express SV40 T antigen weakly, and recover their macrophage properties (Takayama, 1980). In the hope of clarifying the relationship between T antigen, cell growth, and macrophage-specific cellular function, we examined the behavior at 33 and 39 degrees C of mouse bone marrow cells transformed by an SV40 gene A mutant (tsA640) whose mutation renders the molecular weight of 90K (large) T antigen temperature sensitive. The results presented in this paper suggest that functional large T antigen is required for cells in the stationary phase to initiate multiplication when transferred at lower density and is not necessary for a majority of them to maintain the nongrowing state (viability) at both high and lower cell densities, whereas it is required for cells in the growing phase to keep multiplying without losing their viability. The results also suggest that the functional large T antigen does not play a direct role in maintaining the cells as either phagocytic or nonphagocytic. It is also suggested that the physiological or tsA mutation-mediated arrest of growth may or may not be accompanied by induction and/or maintenance of cellular phagocytic activity depending on the culture state.  相似文献   

19.
Cytoagglutination with Concanavalin A was studied in SV3T3 cells as a function of cell density. Agglutinability was low in subconfluent cultures (midpoint concentration 200 μg/ml) buth high in multilayered cultures (midpoint concentration 10–15 μg/ml). Normal 3T3 cells retained low agglutinability (midpoint concentration 1000 μg/ml) even when seeded at superconfluent density. By growing SV3T3 cells at low and at high density in the same culture dish it could be excluded that density modulation of cytoagglutination was caused by differences in pH or nutrient supply. Changes in the density of ConA binding sites or in ATP concentration could not account for the 20-fold difference in agglutinability between cells from high and low density regions. Cell kinetic studies demonstrated that all cells in high and low density cultures were in log phase of growth, differing only in the amount of intercellular contact. In Py-BHK cells, density modulation of agglutinability was much less demonstrated. Unlike SV3T3 cells, these cells rearranged on the substrate when seeded at low density to form clusters of cells with intensive overlapping contact. The results suggest that in transformed cells, cell-to-cell contact is a major determinant of high agglutinability which therefore seems the result, rather than the cause, of uncontrolled growth.  相似文献   

20.
SV40-3T3 cells were exposed in monolayer cultures to 5 × 10−7 M methotrexate (MTX), that inhibited thymidylate synthetase, arrested cell growth without cell killing in 24 h and did not induce single- (ss) or double-strand (ds) breaks in DNA. Following 24, up to 72 h, the poly(ADP-ribose) polymerase content of attached cells was induced by 5 × 10−7 M MTX and the augmentation of the enzyme increased with the time of exposure to the drug. Inhibition of protein or RNA synthesis abolished augmentation of enzymatic activity; so too did the initiation of maximal cell growth by thymidine + hypoxanthine, by-passing the inhibitory site of MTX. Isolation of the ADP-ribosylated enzyme protein by gel electrophoresis identified poly(ADP-ribose) polymerase protein as the molecule that was induced by 5 × 10−7 M MTX. Under identical conditions, the poly(ADP-ribose) polymerase induction in 3T3 cells could not be demonstrated. A possible cell-cycle-dependent biosynthesis of the enzyme protein is proposed in SV40 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号