首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-course of changes in the pattern of newly synthesized proteins in the R15 neuron of the parietovisceral ganglion of Aplysia californica has been studied at 14 degrees C. 5% polyacrylamide gels containing sodium dodecyl sulfate (SDS) have been used to separate newly synthesized (leucine-labeled) proteins from the neuron. We have demonstrated that the pattern of newly synthesized proteins from the R15 neuron does not change significantly if 5-h pulses of labeled leucine are given during the first 72 h of in vitro incubation of the excised ganglion. However, the level of leucine incorporation begins to decline somewhere between 17 and 43 h after the ganglion is isolated; at 43 and 69 h the levels of incorporation fell to 29 and 10% of the initial level, respectively. A number of conclusions have been drawn from the use of a sequential, double-label type of experiment in the same cell. There is processing of SDS-soluble, 12,000-dalton (12k) material to 6,000-9,000-dalton (6-9k) material. These materials are the two major peaks on gels after long labeling periods and together account for about 35% of all newly synthesized proteins. After synthesis of 12k material, there is a gradual disappearance of 12k (half-life about 8 h) and simultaneous appearance of 6-9k material on the gels, as the postsynthesis "chase" period of ganglia incubation is increased. The processing of 12k to 6-9k material occurs even in the presence of anisomycin, a protein syntehsis inhibitor, during the chase period. While the rate of 12k to 6-9k conversion can vary from cell to cell, it appears to remain consistent within, and is characteristic of, any individual R15. We detect no circadian rhythm in either the rate of 12k synthesis or the rate of 12k to 6-9k processing with 5-h label periods. These results are discussed in relation to the roles of 12k and 6-9k material in the R15 neuron.  相似文献   

2.
How aging affects the communication between neurons is poorly understood. To address this question, we have studied the electrophysiological properties of identified neuron R15 of the marine mollusk Aplysia californica. R15 is a bursting neuron in the abdominal ganglia of the central nervous system and is implicated in reproduction, water balance, and heart function. Exposure to acetylcholine (ACh) causes an increase in R15 burst firing. Whole-cell recordings of R15 in the intact ganglia dissected from mature and old Aplysia showed specific changes in burst firing and properties of action potentials induced by ACh. We found that while there were no significant changes in resting membrane potential and latency in response to ACh, the burst number and burst duration is altered during aging. The action potential waveform analysis showed that unlike mature neurons, the duration of depolarization and the repolarization amplitude and duration did not change in old neurons in response to ACh. Furthermore, single neuron quantitative analysis of acetylcholine receptors (AChRs) suggested alteration of expression of specific AChRs in R15 neurons during aging. These results suggest a defect in cholinergic transmission during aging of the R15 neuron.  相似文献   

3.
KIF15, the vertebrate kinesin‐12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin‐5), KIF15 interacts with microtubules in the axon to limit their sliding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by injecting splice‐blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied CRISPR/Cas9‐based knockout technology to create kif15 mutants and labeled neurons with Tg(mnx1:GFP) transgene or transient expression of elavl3:EGFP‐alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion of kif15 during Caudal primary motor neuron and Rohon‐Beard (R‐B) sensory neuron development. The results showed, compared to the kif15 wildtype, the number of branches was reduced while axon outgrowth was accelerated in kif15 homozygotic and heterozygotic mutants. In R‐B sensory neurons, after laser irradiation, injured axons with loss of kif15 displayed significantly greater regenerative velocity. Given these results and the fact that kif15 drugs are currently under development, we posit kif15 as a novel target for therapeutically augmenting regeneration of injured axons.   相似文献   

4.
Abstract: Cerebellar granule neurons maintained in medium containing serum and 25 mM K+ reliably undergo an apoptotic death when switched to serum-free medium with 5 mM K+. New mRNA and protein synthesis and formation of reactive oxygen intermediates are required steps in K+ deprivation-induced apoptosis of these neurons. Here we show that neurotrophins, members of the nerve growth factor gene family, protect from K+/serum deprivation-induced apoptotic death of cerebellar granule neurons in a temporally distinct manner. Switching granule neurons, on day in vitro (DIV) 4, 10, 20, 30, or 40, from high-K+ to low-K+/serum-free medium decreased viability by >50% when measured after 30 h. Treatment of low-K+ granule neurons at DIV 4 with nerve growth factor, brain-derived neurotrophic factor (BDNF), neurotrophin-3, or neurotrophin-4/5 (NT-4/5) demonstrated concentration-dependent (1–100 ng/ml) protective effects only for BDNF and NT-4/5. Between DIV 10 and 20, K+-deprived granule neurons showed decreasing sensitivity to BDNF and no response to NT-4/5. Cerebellar granule neuron death induced by K+ withdrawal at DIV 30 and 40 was blocked only by neurotrophin-3. BDNF and NT-4/5 also circumvented glutamate-induced oxidative death in DIV 1–2 granule neurons. Granule neuron death caused by K+ withdrawal or glutamate-triggered oxidative stress was, moreover, limited by free radical scavengers like melatonin. Neurotrophin-protective effects, but not those of antioxidants, were blocked by selective inhibitors of phosphatidylinositol 3-kinase or the mitogen-activated protein kinase pathway, depending on the nature of the oxidant stress. These observations indicate that the survival-promoting effects of neurotrophins for central neurons, whose cellular antioxidant defenses are challenged, require activation of distinct signal transduction pathways.  相似文献   

5.
Inferior colliculus (IC) slice cultures from postnatal (P) day 6–8 gerbils exhibit axonal regeneration across a lesion site, and these regrowing processes can form synapses. To determine whether regenerative capacity is lost in older tissue, as occurs in vivo, slices from P12–21‐day animals were grown under similar conditions. While these cultures displayed a near complete loss of neurons over 6 days in vitro, glutamate receptor antagonists (AP5 and/or CNQX) significantly enhanced survival, particularly at P12–15. In contrast, several growth factors or high potassium did not improve neuron survival. Therefore, axonal regeneration was assessed following complete transection of the commissure in AP5/CNQX‐treated IC cultures from P12 animals. Neurofilament staining revealed that transected commissural axons survived for 6 days in vitro, but only a few processes crossed the lesion site and these axons did not extend into the contralateral lobe. In contrast, there was robust axonal sprouting and growth within one lobe of the IC, remote from the lesion site. When P6 and P12 tissue was explanted onto a coated substrate, the P6 axons grew onto the substrate, but the P12 axons were seemingly prevented from reaching the substrate by a veil of nonneuronal cells. Coculture of the IC and one of its afferent populations, the lateral superior olive, provided a similar finding, indicating that failure to regenerate was a general property at the age examined. These data show that neuron survival is not sufficient to permit axon regeneration at P12, and suggest that P12 lesion sites manufacture a prohibitive substrate since process outgrowth is blocked specifically at the commissure transection. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 267–280, 1999  相似文献   

6.
Summary Phloem proteins of the sieve tube exudate from Cucurbita maxima Duch. and Cucurbita pepo L. were investigated as to their filament forming ability in vitro. From the two main proteins (116000 dalton, 30000 dalton) only the 116000 dalton protein was found to form reversibly distinct filaments of 6–7 nm diameter upon removal of SH-protecting agents from the buffer, whereas the 30000 dalton protein was precipitated as amorphous material under these conditions. The protein filaments were similar to the filaments ocurring within the sieve tube cells in vivo.Abbreviations SDS sodium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

7.
Parietovisceral ganglia from Aplysia californica were incubated in medium containing leucine-3H. Single, identified nerve cell somas were isolated from the ganglia, and their proteins extracted and separated by electrophoresis on 5% SDS-polyacrylamide gels. The distribution of total or newly synthesized proteins from the single neurons was determined by staining or slicing and liquid scintillation counting of the gels. Experiments showed that: (a) a number of proteins were being synthesized in abundance in the nerve cells; (b) different, identified neurons showed reproducibly different labeling patterns in the gels; (c) cells R2 and R15, which showed different distributions of radioactivity in the gels, had similar staining patterns; and (d) there was significant incorporation into material of high (>75,000) molecular weight in most of the cells.  相似文献   

8.
Mitochondrial malfunction is a universal and critical step in the pathogenesis of many neurodegenerative diseases including prion diseases. Dynamin‐like protein 1 (DLP1) is one of the key regulators of mitochondrial fission. In this study, we investigated the role of DLP1 in mitochondrial fragmentation and dysfunction in neurons using in vitro and in vivo prion disease models. Mitochondria became fragmented and redistributed from axons to soma, correlated with increased mitochondrial DLP1 expression in murine primary neurons (N2a cells) treated with the prion peptide PrP106–126 in vitro as well as in prion strain‐infected hamster brain in vivo. Suppression of DLP1 expression by DPL1 RNAi inhibited prion‐induced mitochondrial fragmentation and dysfunction (measured by ADP/ATP ratio, mitochondrial membrane potential, and mitochondrial integrity). We also demonstrated that DLP1 RNAi is neuroprotective against prion peptide in N2a cells as shown by improved cell viability and decreased apoptosis markers, caspase 3 induced by PrP106–126. On the contrary, overexpression of DLP1 exacerbated mitochondrial dysfunction and cell death. Moreover, inhibition of DLP1 expression ameliorated PrP106–126‐induced neurite loss and synaptic abnormalities (i.e., loss of dendritic spine and PSD‐95, a postsynaptic scaffolding protein as a marker of synaptic plasticity) in primary neurons, suggesting that altered DLP1 expression and mitochondrial fragmentation are upstream events that mediate PrP106–126‐induced neuron loss and degeneration. Our findings suggest that DLP1‐dependent mitochondrial fragmentation and redistribution plays a pivotal role in PrPSc‐associated mitochondria dysfunction and neuron apoptosis. Inhibition of DLP1 may be a novel and effective strategy in the prevention and treatment of prion diseases.  相似文献   

9.
Summary The morphology, innervation, and neural control of the anterior arterial system of Aplysia californica were investigated. Immunocytochemical and histochemical techniques generated positive reactions in the anterior arterial system for several neuroactive substances, including SCPB, FMRFamide, R151 peptide, dopamine and serotonin. Three neurons were found to innervate the rostral portions of the anterior arterial tree. One is the identified peptidergic neuron R15 in the abdominal ganglion, and the other two are a pair of previously unidentified neurons, one in each pedal ganglion, named pedal arterial shorteners (PAS)- The endogeneously bursting neuron R15 was found to innervate the proximal anterior aorta. It also innervates a branch of the distal anterior aorta, the left pedal-parapodial artery. Activity in R15 causes constriction of the left pedal-parapodial artery. This effect is presumed to direct hemolymph towards the genital groove and penis on the right side in vivo. This vasoconstrictor action of R15 is mimicked by the R151 peptide. The PAS neuron pair causes longitudinal contraction of the rostral anterior aorta and the pedal-parapodial arteries. In vivo, the pair is active during behaviors involving head withdrawal and turning. By adjusting the length of the arteries during postural changes, the PAS neurons may prevent disturbances in blood flow due to bending or kinking of the arterial walls.  相似文献   

10.
Neuronal survival in the vertebrate peripheral nervous system depends on neurotrophic factors available from target tissues. In an attempt to identify novel survival factors, we have studied the effect of secreted factors from retinal cells on the survival of chick sympathetic ganglion neurons. Embryonic day 10 sympathetic neurons undergo programmed cell death after 48 h without appropriate levels of nerve growth factor (NGF). Retina Conditioned Media (RCM) from explants of embryonic day 11 retinas maintained for 4 days in vitro supported 90% of E10 chick sympathetic neurons after 48 h. Conditioned medium from purified chick retinal Muller glial cells supported nearly 100% of E10 chick sympathetic neurons. Anti‐NGF (1 μg/mL) blocked the survival effect of NGF, but did not block the trophic effect of RCM. Neither BDNF nor NT4 (0.1–50 ng/mL) supported E10 sympathetic neuron survival. Incubation of chimeric immunoglobulin‐receptors TrkA, TrkB, or TrkC had no effect on RCM‐induced sympathetic neuron survival. The survival effects were not blocked by anti‐GDNF, anti‐TGFβ, and anti‐CNTF and were not mimicked by FGFb (0.1–10 nM). LY294002 at 50 μM, but not PD098059 blocked sympathetic survival induced by RCM. Further, the combination of RCM and NGF did not result in an increase in neuronal survival compared with NGF alone (82% survival after 48 h). The secreted factor in RCM is retained in subfractions with a molecular weight above 100 kDa, binds to heparin, and is unaffected by dialysis, but is heat sensitive. Our results indicate the presence of a high‐molecular weight retinal secreted factor that supports sympathetic neurons in culture. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 13–23, 2002  相似文献   

11.
Biosynthesis of the egg-laying hormone in the bag cell neurons of Aplysia californica was studied. Bag cells were incubated with leucine-3H in vitro for 30 min and rinsed for variable periods of time in a chase medium. The distribution of incorporated label among proteins within the cells was assayed by electrophoresis of an homogenate on sodium dodecyl sulfate polyacrylamide gels. Results from rinse times shorter than 30 min revealed that the predominant synthetic product is a 25,000 dalton protein. With longer rinse times, this species was reduced and two species of lower molecular weight became prominent. This redistribution of radioactivity was quantitative and was not prevented by inhibition of protein synthesis during the rinse. A 10°C reduction in temperature (from 15°C) blocked the redistribution. These data are interpreted to indicate that the 25,000 dalton molecule is a precursor which is cleaved enzymatically to yield two lower molecular weight products. One product is a 12,000 dalton molecule which remains in the cell bodies. The other is a molecule of <10,000 daltons which is exported from the somata into the neurohemal regions of the connective tissue. Perfusion of these regions with high [K+] medium results in the release of this product into the medium. It is concluded that this product is the 6000 dalton egg-laying hormone (ELH).  相似文献   

12.
The mechanisms of injury‐induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve‐spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7–14 days postlesion. This motor neuron apoptosis is blocked in bax?/? and p53?/? mice. Single‐cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single‐strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4–5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase‐3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase‐3. We conclude that adult motor neuron death after nerve avulsion is DNA damage‐induced, p53‐ and Bax‐dependent apoptosis. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 181–197, 2002; DOI 10.1002/neu.10026  相似文献   

13.
Rhamnus alaternus and R. ludovici-salvatoris, two Mediterranean shrubs with different geographic distributions, have shown important differences in seedling recruitment capacity. The objectives of this work were to determine the ability of these species to germinate seeds under different temperature ranges, as well as the capacity of seedlings to emerge from different burial depths, in order to better understand their regeneration processes. Two different experiments were performed. In the first one, seed germination was studied in Petri dishes and in the dark at different temperature regimes: a) 5–15°C, b) 10–20°C and c) 15–25°C (12h/12h). In the second experiment, seedling emergence capacity from different burial depths (0.5, 2 and 5 cm) was tested. R. ludovici-salvatoris showed a significantly higher final germination rates, a lower dormancy period, and average time response at 10–20°C than at other temperature ranges, although differences were much greater when seeds were subjected to the 5–15°C temperature regime. By contrast, R. alaternus did not show significant differences between treatments (5–15°C and 10–20°C) in germination behavior. Seedling emergence of both species was lower and slower when seeds were buried at 5 cm. However, R. ludovici-salvatoris always showed a lower seedling emergence capacity than R. alaternus at any burial depth. The low ability of R. ludovici-salvatoris to germinate seeds and emerge between 5–15°C, even from shallow depths, is discussed in relation to its low regeneration capacity and declining geographic distribution.  相似文献   

14.
We examined a variety of factors that might modulate the initiation of neurite outgrowth in an attempt to identify means by which its initiation might be accelerated. We examined this initiatio from an identified molluscan neuron, Helisoma trivolvis buccal neuron B5 after axotomy, and determined whether the site of injury, temperature, ion channel blockers, pH, the second messenger cAMP, and protein synthesis affect the initiation of neurite outgrowth. Neurite outgrowth was assayed from axotomized neurons by filling the neurons intracellularly with Lucifer Yellow and examining the percentage of axons that extended (sprouted) new process after 9 or 24 h in organ culture. About one-third (31%) of axotomized neurons sprouted from the site of injury after 9 h (n = 22), and 88% (n = 20) sprouted after 24 h in saline at 22°–24°C when the injury was located 800 μm from the soma. Elevating the temperature to 32°C or moving the lesion site to 400 or 1500 μm from the soma did not significantly alter the incidence of sprouting. Blocking sodium channels with tetrodotoxin [TTX (2 × 10?5 M)] did not significantly reduce the incidence of sprouting, whereas the sodium channel agonist, veratridine (10?5 M) did. The calcium channel blocker lanthanum (10?6–10?4 M), stimulated neurite outgrowth; however, the organic calcium channel blocker verapamil (10?3–10?5 M), and the calcium ionophore A23187 (10?5 M), had no effect on sprouting. Exposure of neurons to the potassium channel blocker tetraethylammonium [TEA (20 mM)], elevation of intracellular pH with NH4Cl (5 mM), or treatment with the adenylate cyclase activator forskolin (10?5 M) reduced the incidence of sprouting, whereas dideoxy-forskolin (10?5 M) had no effect. Inhibition of protein synthesis with anisomycin (2 × 10?4 to 2 × 10?6 M) did not significantly suppress sprouting 24 h after axotomy. Both d and l isomers of glutamate (300 μM) stimulated sprouting. The present results suggest that the initiation of sprouting is regulated locally at or near the site of injury, and that blocking specific ion channels may either inhibit or enhance the initiation of neurite outgrowth.  相似文献   

15.
Expression of swimming in the medicinal leech (Hirudo medicinalis) is modulated by serotonin, a naturally occurring neurohormone. Exogenous application of serotonin engenders spontaneous swimming activity in nerve-cord preparations. We examined whether this activity is due to enhanced participation of swim motor neurons (MNs) in generating the swimming rhythm. We found that depolarizing current injections into MNs during fictive swimming are more effective in shifting cycle phase in nerve cords following serotonin exposure. In such preparations, the dynamics of membrane potential excursions following current injection into neuronal somata are substantially altered. We observed: 1) a delayed outward rectification (relaxation) during depolarizing current injection, most marked in inhibitory MNs; and 2) in excitor MNs, an enhancement of postinhibitory rebound (PIR) and afterhyperpolarizing potentials (AHPs) following hyperpolarizing and depolarizing current pulses, respectively. In contrast, we found little alteration in MN properties in leech nerve cords depleted of amines. We propose that enhanced expression of swimming activity in leeches exposed to elevated serotonin is due, partly, to enhancement of relaxation, PIR and AHP in MNs. We believe that as a consequence of alterations in cellular properties and synaptic interactions (subsequent paper) by serotonin, MNs are reconfigured to more effectively participate in generating and expressing the leech swimming rhythm.Abbreviations AHP Afterhyperpolarizing potential - DCC Discontinuous current clamp - DE Dorsal excitor motor neuron - DI Dorsal inhibitor motor neuron - IPSP Inhibitory postsynaptic potential - MN Motor neuron - PIR Postinhibitory rebound - VE Ventral excitor motor neuron - VI Ventral inhibitor motor neuron  相似文献   

16.
Vitellogenin (Vg) synthesized by the fat body of Leucophaea maderaeis made up of four polypeptides with molecular weights of 160,000, 105,000, 98,000, and 57,000. Other polypeptides previously reported as part of Vg are associated with other proteins. Vitellin (Vt), the yolk protein (YP) isolated from mature oocytes and from newly formed oothecae, is a protein with a sedimentation coefficient of 28s and consists of three polypeptides with molecular weights of 105,000, 85,000, and 57,000. During vitellogenesis, the YP of developing oocytes contains both Vt and a 14s component. The 14s component is made up of four polypeptides with molecular weights of 105,000, 90,000, 85,000, and 57,000. The data suggest that 14s may not be a discrete protein but rather a form in transition between Vg and Vt in which the 98,000 dalton polypeptide is converted to the 85,000 dalton polypeptide of Vt through a 90,000 dalton intermediate. The 160,000 dalton peptide of Vg does not appear to be a part of Vt. Under alkaline conditions, both the 14s component and Vt are reduced to a polypeptide with a lower sedimentation rate in sucrose gradients. When acid conditions are restored, a protein resembling 14s is obtained. This suggests that the YP is a loosely held aggregate of similar or identical proteins with a molecular weight of about 250,000.  相似文献   

17.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26–34), and the 8-amino acid alpha-bag cell peptide (α-BCP1–8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both α-BCP1–8 and B26–34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells in mimicked by α-BCP1–8. The excitatory effect of the atrial gland extract cannot be duplicated with B26–34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26–34 seems to mimick α-BCP1–8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

18.
Immunohistochemistry for neuron-specific nuclear protein (NeuN), caspase-3, calcitonin gene-related peptide (CGRP), and calcium-binding proteins was performed on the trigeminal ganglion (TG) in wild type and Brn-3a knockout mice at embryonic days 12.5–16.5 (E12.5–E16.5). In Brn-3a knockout mice, the number of NeuN-immunoreactive (ir) neuron profiles increased at E14.5 (40.0% increase) and decreased at E16.5 (28.3% reduction) compared to wild type mice. Caspase-3-ir neuron profiles were abundant in the TG of wild type mice at E12.5–E16.5. However, the loss of Brn-3a decreased the number of caspase-3-ir neuron profiles at E12.5 (69.7% reduction) and E14.5 (51.7% reduction). At E16.5, the distribution of caspase-3-ir neuron profiles was barely affected by the deficiency. CGRP-ir neuron profiles were observed in the TG of wild type mice but not knockout mice at E12.5. At E14.5 and E16.5, CGRP-ir neuron profiles were abundant in both wild type and knockout mice. Calbindin D-28 k (CB)-ir neuron profiles decreased in the TG of mutant mice at E12.5 compared to wild type mice (56.4% reduction). At E14.5, however, Brn-3a deficiency transiently increased CB-ir neuron profiles (169.4% increase as compared to wild type mice). Calretinin (CR)-ir neuron profiles could not be detected in the TG of wild type mice at E12.5–16.5. However, numerous CR-ir neuron profiles transiently appeared in the knockout mouse at E14.5. Parvalbumin (PV)-ir neurons appeared in wild type and knockout mice at E14.5. At this stage, the number of large (>50 μm2) PV-ir neuron profiles in knockout mice was fewer than that in wild type mice. The number and cell size of PV-ir neuron profiles were barely affected by the deficiency at E16.5. The present study indicates that the loss of Brn-3a causes increase of TG neurons at E14.5 and decrease of TG neurons at E16.5. It is also suggested that Brn-3a deficiency affects the number and cell size of CGRP- and calcium-binding protein-containing neurons at E12.5 and E14.5. Caspase-3-dependent cell death of CB- and CR-ir neurons may be suppressed by the deficiency at E14.5.  相似文献   

19.
Degradation of otherwise stable rRNA and tRNA takes place in the presence of rifampin, dependent on the F plasmid srnB gene. We have reported that a protein newly synthesized in the presence of rifampin might be a product of the srnB gene required for stable RNA degradation (Ito, R. and Ohnishi, Y. (1983) Biochim. Biophys. Acta 739, 27–34). Here we have further studied the mechanism of srnB expression. Among eighteen mutants with altered RNA polymerase, two (TJ2470 (rpoC4) and TJ302 (rpoC56)) showed RNA degradation at high temperature (42°C) when the srnB gene was present. Labeling proteins at 42°C in strain TJ2470 indicated that a protein of molecular weight 12 000 was a product of the srnB gene, and that expression of the srnB gene provoked RNA degradation. Using plasmid pTK4, in which the srnB gene is inserted downstream of the promoter of lacZ, lac promoter-dependent expression of the srnB gene, with production of the putative protein product, also induced RNA degradation at 42°C, with no requirement for added rifampin or altered RNA polymerase. RNA degradation in these conditions was quite similar to that in the case of the addition of rifampin; e.g., it showed some responses to Mg2+, temperature and RNAase I content of the cells. Expression of the srnB gene dependent on lac promoter was also observed in minicells. Thus, it is inferred that the srnB gene is probably repressed under normal conditions with its own promoter; its expression initiates RNA turnover.  相似文献   

20.
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号