首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A long-lasting birefringence change (the delayed response) was found to be produced in a tetanically stimulated squid giant axon. The change was independent of the concurrent membrane potential change, summated on repetitive stimulation, and always had a sign representing a decrease in resting birefringence. The axons was placed between a polarizer and an analyzer with their polarizing axes crossed, making an angle of 45 degrees with the longitudinal direction of the axon. The light beam that passed through the axon and the other optical elements was received by a photodiode. The change in light intensity evoked by repetitive stimulation was composed of brief initial responses, which took place in response to individual stimuli, and a delayed response, which developed gradually and lasted for several hundred msec. It was necessary to differentiate the effect of birefringence change from that of turbidity change. Formulas were derived on the assumption that the optical properties of the axon could be represented by a model of a uniaxial crystal that was not only birefringent but also dichroic, its extinction coefficients and the angle of retardation being changed independently on excitation. Calculations with them yielded the resting retardation, which agreed well with those obtained by the Senarmont's method, and the change in birefringence, which agreed well with the other calculated value derived from experiments using a quarter-wave plate. The results of the calculation confirmed the existence of the long-lasting birefringence change in the tetanically stimulated axon.  相似文献   

2.
The optical signal, arising from a transient birefringence change associated with excitation, was recorded from a squid giant axon together with the membrane potential change, and the effect of removal of the axoplasm on the optical signal was examined. In an unperfused axon, repetitive stimulation at a frequency of about 100 Hz produced two kinds of optical response. The initial response had a brief, spike-like time course and was elicited by each stimulating pulse. The delayed response had a slow time course and the sign of decreased light intensity, and summated with repetitive stimulation. Most of the axoplasm was removed from interior of the axon by intracellular perfusion with solutions containing pronase at a concentration of 0.1 mg/ml. The delayed response could selectively be eliminated by perfusion with a pronase-containing solution for 2–8 min. The result was interpreted as showing that the delayed birefringence signal originates from axoplasm when its gel structure was transiently disturbed by an increased Ca2+ influx associated with excitation. When perfusion was further continued the duration of the action potential started increasing and often a prominent after-depolarization appeared. At this stage the initial optical response was again followed by a large show signal with the sign of increased light intensity. This reversed delayed response was tentatively assumed to originate from the membrane with some remaining axoplasm, but its cause is still not understood.  相似文献   

3.
In this report we review evidence that indicates that experimental elevation of t-tubular calcium can lead to failure of action potential propagation within the t system and we present some new evidence suggesting that t-tubular calcium concentration may rise during repetitive activity. The evidence for t-tubular conduction failure consists of comparisons of the effects of high calcium and of ruthenium red on excitation and excitation-contraction coupling as well as morphological observations of wavy myofibrils in the axial core of fibers contracting tetanically in solutions containing elevated calcium concentrations. Evidence for elevation of t-tubular calcium concentration during repetitive activity comes from the following. During twitches, the early, large birefringence signal and force development are delayed in onset if the extracellular calcium and (or) potassium concentrations are above normal or if the fiber has been stimulated tetanically just prior to the test twitch. The delays that occur in twitches following tetanic contractions are attenuated when the extracellular and, therefore, the t-tubular calcium concentration is buffered with citrate.  相似文献   

4.
In this theory, we propose that the action potential and the birefringence change in nerve axon are both originated from dipole reorientation at the membrane surface under stimulation. The calculation is based upon a dipole distribution in two energy bands with a population ratior. Coincidence of the action potential with the birefringence change is predicted to occur whenr is in the order of 0.1 which corresponds to severalkT for the energy separation between the two bands. Furthermore, at any value ofr, there is always a small delay of the birefringence change behind the action potential. The theory not only is in good agreement with the recent optical observations in nerve but also indicates a possible physical origin of action potential, a long unresolved problem in neurophysiology.  相似文献   

5.
Aequorin was microinjected into squid giant axons, the axons were stimulated, and the change in light emission was followed. This response was compared with that found when the axon, in addition to being microinjected with aequorin, is also injected with the dye phenol red. Large concentrations of phenol red injected into axons result in a high probability that photons emitted by aequorin, when it reacts with Ca in the core of the axoplasm, will be absorbed before they escape from the axon; photons produced by the aequorin reaction at the periphery of the axoplasm are much less likely to be absorbed. This technique thus favors observing changes in Cai taking place in the periphery of the axon. Stimulation in 50 mM Ca seawater of an aequorin-phenol red-injected axon at 180 s-1 for 1 min produces a scarcely detectable change in Cai; the addition of 2 mM cyanide (CN) to the seawater produces an easily measureable increase in Cai, suggesting that mitochondrial buffering in the periphery is substantial. Making the pH of the axoplasm of a normal axon alkaline with 30 mM NH4+ -50 mM Ca seawater, reduces the resting glow of the axon but results in an even more rapid increase in Cai with stimulation. In a phenol red-injected axon, this treatment results in a measureable response to stimulation in the absence of CN.  相似文献   

6.
The "late" Ca channel in squid axons   总被引:6,自引:3,他引:3       下载免费PDF全文
Squid giant axons were injected with aequorin and then treated with seawater containing 50 mM Ca and 100-465 mM K+. Measurements of light production suggested a phasic entry of Ca as well as an enhanced steady-state aequorin glow. After a test K+ depolarization, the aequorin-injected axon was stimulated for 30 min in Li seawater that was Ca-free, a procedure known to reduce [Na]i to about one-half the normal concentration. Reapplication of the elevated K+ test solution now showed that the Ca entry was virtually abolished by this stimulation in Li. A subsequent stimulation of the axon in Na seawater for 30 min resulted in recovery of the response to depolarization by high K+ noted in a normal fresh axon. In axons first tested for a high K+ response and then stimulated in Na seawater for 30 min (where [Na]i increases approximately 30%), there was approximately eight fold enhancement in this response to a test polarization. Axons depolarized with 465 mM K seawater in the absence of external Ca for several minutes were still capable of producing a large phasic entry of Ca when [Ca]0 was made 50 mM, which suggests that it is Ca entry itself rather than membrane depolarization that produced inactivation. Responses to stimulation at 60 pulses/s in Na seawater containing 50 mM Ca are at best only 5% of those measured with high K solutions. The response to repetitive stimulation is not measurable if [Ca]o is made 1 mM, whereas the response to steady depolarization is scarcely affected.  相似文献   

7.
Metabolism and tension were examined in single fibers of the semitendinosus muscle of Rana pipiens at 15 degree C after excitation- contraction uncoupling by stretch and hypertonicity. Interrupted tetanic stimulation at 20 HZ for 150 s, of control fibers in isotonic Ringer at a rest sarcomere length (SL) of 2.3 micrometers, resulted in a steadily declining tension, stimulated glycolysis, and significantly reduced fiber phosphocreatine (PCr) and ATP concentrations. Stretching resting muscle fibers to an SL of 4.7 micrometers did not alter metabolite concentrations, but glucose-6-phosphate rose and PCr fell markedly when the stretched fibers were stimulated tetanically, although tension was absent. Immersion of untetanized fibers in 2.5 X isotonic Ringer produced a transient rise in resting tension, an increase in glucose-6-phosphate, and a significant reduction in PCr. During the transient rise in resting tension, PCr consumption per unit of tension-time integral was the same as that in fibers stimulated tetanically in isotonic Ringer. Tetanization of fibers in hypertonic solution did not further alter metabolite concentrations or produce tension. The results indicate that exposure to hypertonicity induces an increase in both tension and consumption of high-energy phosphate bonds (approximately P) in resting fibers, but stretch does not. during tetanic stimulation, stretch interferes with contraction but does not prevent activation, whereas hypertonicity inhibits activation as well as contraction.  相似文献   

8.
Among the signs of activity in excitable membranes, the action current (electrical spike) has been extensively studied. Recently, a new approach with optical methods has been rewarding. In nerves, a transient, rapid change of light scanning, birefringence and induced fluorescence can be observed during the passage of the action current. These optical effects are synchronous with the electrical spike and are therefore called the optical spikes. Birefringence decreases during excitation in the giant axon of the squid, the walking nerves of Maia, the vagus nerve of the rabbit, but it increases in the olfactory nerve of the pike, which contains 4 million nonmedullated nerve fibres. Light scattering increases or decreases depending on the angle of observation. Vitally stained nerves with fluorescent probes show an increase and a shift in the wavelength distribution of the fluorescent spike.  相似文献   

9.
In rats, in the course of a long-lasting m. rectus abdominis motor units activity combined with repetitive afferent stimulation of the ischiadic nerve, the units' firing rate decreased. The dependence of the motor units response to afferent stimulation on the background firing rate was preserved during the long-lasting activity in spite of changes in the background firing rate.  相似文献   

10.
Afferent activity in a receptor afferent fiber with several encoding sites is generally believed to represent the activity of the fastest pacemaker that resets all more slowly encoding sites. Alternatively, some impulse mixing as well as some nonlinear summation of receptor current to a single encoder have been considered. In this article the repetitive firing activity of a Hodgkin-Huxley axon consisting of two branches that join into a single stem axon was investigated. The model axon was stimulated by constant-current injection into either the right or the left or both branches. It was found that the model axon generated an (infinite) train of action potentials if the input current was large enough. The discharge frequency found was constant, and on combined stimulation of both branches with different current, the site of impulse initiation was always in the branch receiving the higher input current, excluding a simple impulse mixing. On the other hand, the combined stimulation of both branches evoked repetitive firing with a higher frequency than expected by the pacemaker-resetting hypothesis. Moreover, a stimulus that is subthreshold for repetitive firing if injected into one branch yields repetitive firing when it is injected into both branches, a behavior inconsistent with impulse mixing and pacemaker resetting. On the other hand, current injection into one branch allowed repetitive activity only within a rather limited range of firing frequencies. Using distributed current injection into both branches, however, allowed many more different firing frequencies. Such behavior is inconsistent with both pacemaker resetting and (nonlinear) input current summation. Consequently, the repetitive firing behavior of a branched Hodgkin-Huxley axon with multiple encoding sites appears to be more complex than postulated in the simple hypotheses.  相似文献   

11.
Birefringence signals from mammalian and frog hearts were studied. The period between excitation and the onset of contraction in which optical signals were free of movement artifact was determined by changes in scattered incandescent light and changes in laser diffraction patterns. The birefringence signal preceding contraction was found to behave as a change in retardation and was not contaminated measurably by linear dichroic or isotropic absorption changes. There were two components of the birefringence signal in mammalian heart muscles but only one component in the frog heart. The first component of the birefringence signals in both mammalian and frog hearts had a time course coincident with the action potential upstroke. The second component in mammalian preparations was sensitive to inotropic interventions, such as variation of extracellular Ca2+, stimulation frequency, temperature, and epinephrine, in a manner that correlated with the maximum rate of rise of tension. Caffeine (2-10 mM) not only failed to generate a second component in the frog heart, but also suppressed the second component in the mammalian heart while potentiating twitch tension. The results suggest that the second component of the birefringence signal in the mammalian myocardium is related to Ca2+ release from the sarcoplasmic reticulum.  相似文献   

12.
The Hodgkin-Huxley equations for space-clamped squid axon (18 degrees C) have been modified to approximate voltage clamp data from repetitive-firing crustacean walking leg axons and activity in response to constant current stimulation has been computed. The m infinity and h infinity parameters of the sodium conductance system were shifted along the voltage axis in opposite directions so that their relative overlap was increased approximately 7 mV. Time constants tau m and tau h, were moved in a similar manner. Voltage-dependent parameters of delayed potassium conductance, n infinity and tau n, were shifted 4.3 mV in the positive direction and tau n was uniformly increased by a factor of 2. Leakage conductance and capacitance were unchanged. Repetitive activity of this modified circuit was qualitatively similar to that of the standard model. A fifth branch was added to the circuit representing a transient potassium conductance system present in the repetitive walking leg axons and in other repetitive neurons. This model, with various parameter choices, fired repetitively down to approximately 2 spikes/s and up to 350/s. The frequency vs. stimulus current plot could be fit well by a straight line over a decade of the low frequency range and the general appearance of the spike trains was similar to that of other repetitive neurons. Stimulus intensities were of the same order as those which produce repetitive activity in the standard Hodgkin-Huxley axon. The repetitive firing rate and first spike latency (utilization time) were found to be most strongly influenced by the inactivation time constant of the transient potassium conductance (tau b), the delayed potassium conductance (tau n), and the value of leakage conductance (gL). The model presents a mechanism by which stable low frequency discharge can be generated by millisecond-order membrane conductance changes.  相似文献   

13.
Nerves to fast- and slow-twitch cat muscles were stimulated with various numbers of supramaximal pulses under isometric conditions. By subtracting the force produced by j - 1 pulses from that produced by j pulses, the contribution of the j th pulse could be compared with the response to one pulse (twitch response). A less-than-linear summation (depression) was observed during the rising phase of the twitch. This depression became increasingly prominent and longer in duration with repetitive stimulation. A more-than-linear summation (facilitation) was observed during the falling phase of the twitch, which became increasingly delayed and smaller in amplitude with repetitive stimulation. The early depression could be abolished for the first few pulses by Dantrolene [1-(5-p-nitrophenyl) furfurilidene amino hydantoin sodium hydrate], which reduced Ca++ release from the sarcoplasmic reticulum. The depression was less prominent at short muscle lengths or with stimulation of single motor units. A first-order, saturable reaction such as Ca++ binding to troponin or actin binding to myosin can quantitatively account for the early depression.  相似文献   

14.
Local movement was recorded in tetanically contracting frog sartorius muscle to estimate the nonuniformity in the distribution of compliance in the muscle preparation and the compliance that resides in the attachments of the preparation to the measuring apparatus. The stimulated muscle was also subjected to rapid length changes, and the local movements and tension responses were recorded. The results indicate that during tension development at resting length the central region of the muscle shortens at the expense of the ends. After stimulation the "shoulder" in the tension, which divided the relaxation into a slow decline and a subsequent, rather exponential decay toward zero, was accompanied by an abrupt increase in local movement. We also examined the temperature sensitivity of the two phases of relaxation. The results are consistent with the view that the decrease in tension during relaxation depends on mechanical conditions. The local movement brought about by the imposed length changes indicates that the peak value of the relative length change of the uniformly acting part was approximately 20% less than the relative length change of the whole preparation. From these observations, corrections were obtained for the compliance data derived from the tension responses. These corrections allow a comparison with data in the literature obtained from single fiber preparations. The implications for the stiffness measured during the tension responses are discussed.  相似文献   

15.
It has been shown experimentally that the crustacean motor axon is supernormally excitable following a train of action potentials (Zucker 1974). Such a phenomenon can lead to recruitment of terminals which are unexcited at low rates of stimulation. Although currents underlying the crustacean motor axon have been characterized (Connor et al. 1977), it is not known whether this membrane model accounts for a supernormal period, what might cause superexcitablity in this model, or how excitability might change during repetitive stimulation. In present study, it is demonstrated that the crustacean motor axon model does predict a supernormal period, that the supernormal period results from slow recovery from inactivation of the transient potassium, or A, current, and that supernormal excitability is enhanced by repetitive stimulation.  相似文献   

16.
《Biophysical journal》2020,118(10):2366-2384
Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.  相似文献   

17.
This study presents 1 use of optical coherence tomography (OCT) angiography technique to examine neurovascular coupling effect. Repeated B‐scans OCT recording is performed on the rat somatosensory cortex with cranial window preparation while its contralateral forepaw is electrically stimulated to activate the neurons in rest. We use an intensity‐based Doppler variance (IBDV) algorithm mapped cerebral blood vessels in the cortex, and the temporal alteration in blood perfusion during neurovascular activation is analyzed using the proposed IBDV quantitative parameters. By using principal component analysis‐based Fuzzy C Means clustering method, the stimulus‐evoked vasomotion patterns were classified into 3 categories. We found that the response time of small vessels (resting diameter 14.9 ±6.6 μm), middle vessels (resting diameter 21.1 ±7.9 μm) and large vessels (resting diameter 50.7 ±6.5 μm) to achieve 5% change of vascular dilation after stimulation was 1.5, 2 and 5.5 seconds, respectively. Approximately 5% peak change of relative blood flow (RBF) in both small and middle vessels was observed. The large vessels react slowly and their responses nearly 4 seconds delayed, but no significant change in RBF of the large vessels was seen.   相似文献   

18.
The electroretinographic responses of regenerated eyes of snails (C. aspersa) were studied by means of suction electrodes and single or repetitive flash stimulation. The eyes were fixed and observed under light and electron microscopy. The results indicate that the electroretinographic response of regenerated eyes does not differ from control eyes after dark adaptation. However, the repetitive stimulation of the regenerated eyes induced an earlier fatigue of the response, evident after the fifth stimulus. This fatigue is a function of light intensity. Ultrastructural features of the regenerated eyes are similar to those of the control eyes but regenerated eyes show smaller rhabdomeres, fewer photic vesicles, and fewer paracrystalline bodies. It is suggested that the regenerated eye lability to the repetitive stimulation might be due to the decrease in the amount of photic vesicles and paracrystalline bodies, to the decrease in membrane surface of the rhabdomeres, or to some other metabolic failure not distinguished at electron microscopic level, like the membrane ionic regulation. The appearance of photic vesicles in the axon cones of regenerated and stimulated cells also suggests a possible failure in the mechanism of transport of vesicles.  相似文献   

19.
Birefringence change during excitation was studied by using Nitellopsis obtusa. The velocity change of cytoplasmic streaming during an action potential was measured simultaneously by fluctuation analysis of transmitted light intensity. The origin of the retardation change was discussed by comparing optical retardation change to the time course of the action potential, the cytoplasmic streaming velocity change and the cell contraction.By the time course analysis of retardation change, we concluded that the change of the birefringence might be the sum of the changes of cytoplasmic flow and that of the size of length and diameter of the cell. But it is still difficult to separate the change to its components.  相似文献   

20.
Analysis of edge birefringence.   总被引:1,自引:0,他引:1       下载免费PDF全文
We present an experimental and theoretical study of the phenomenon of edge birefringence that appears near boundaries of transparent objects which are observed with high extinction and high resolution polarized light microscopy. As test objects, thin flakes of isotropic KCl crystals were immersed in media of various refractive indices. The measured retardation near crystal edges increased linearly with both the crystal thickness (tested between 0.3 and 1 micron), and the difference in refractive indices n between crystal (n = 1.49) and immersion liquids (n between 1.36 and 1.62). The specific edge birefringence, i.e., the retardation per thickness and per refractive index difference, is 0.029 on the high refractive index side of the boundary and -0.015 on the low refractive index side. The transition through zero birefringence specifies the position of a boundary at a much higher precision than predicted by the diffraction limit of the optical setup. The theoretical study employs a ray tracing procedure modeling the change in phase and polarization of rays passing through the specimen. We find good agreement between the model calculations and the experimental results indicating that edge birefringence can be attributed to the change in polarization of light that is refracted and reflected by dielectric interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号