首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used an in vitro preparation of the frog arachnoid membrane to study the role of this membrane in the maintenance of the "blood-cerebrospinal fluid (csf) barrier". Electron microscopy showed that the membrane was made up of 10-15 layers of flat epithelial cells joined together by numerous cell junctions. The electrical resistance of the preparation was about 2000 ohms cm2. The steady-state transmural potential difference (pd) ranged up to 45 mV, csf positive, and this eliminated by either the addition of ouabain to the csf, or by replacing the NaC1 with TEA C1. The pd across the membrane increased when bicarbonate was added to the external bathing solutions. We conclude that this pd is due to the active transport of sodium from the subural fluid to the csf. In some preparations the transmural pd was reversed, i.e., csf negative, and this was also abolished by the addition of ouabain to the csf, or by replacing chloride with isethionate. We conclude that this pd is related to active chloride transport. These, and other experiments, lead us to the conclusion that the arachnois membrane is involved in the production of the cerebrospinal fluid and the maintenance of the blood-cerebrospinal fluid barrier.  相似文献   

2.
Summary The initial rate of Na uptake by the turtle colon from the mucosal bathing solution consists of two operationally distinct components. One component is a linear function of mucosal Na concentration, is unaffected by amiloride, and appears to represent Na uptake into the paracellular shunt path. The major component of Na uptake is abolished by amiloride and is virtually equal to the short-circuit current over a wide range of. mucosal Na concentrations, suggesting that this portion of Na uptake represents Na movement into Na-transporting cells of the colon. The amiloride-sensitive component of Na uptake, at low mucosal Na concentrations, was unaffected if net Na transport was abolished by ouabain. Similarly, at low mucosal Na concentrations the amiloride-sensitive conductance of the colon was identical in the presence and in the absence of net Na transport.These results show that the isolated turtle colon behaves, as two distinct barriers to transmural Na transport, an apical barrier blocked by amiloride and a more basal-lying barrier where active, transmural Na transport is blocked by ouabain. In addition, these experiments appear to provide the first unambiguous demonstration that the initial-rate isotope uptake technique can provide adirect measure of the properties of the amiloridesensitive barrier to transmural Na movement, presumably the apical membranes of the Na-transporting cells. The results are consistent with the notion that the rate of transmural active Na transport and the conductance of the active Na-transport path are determined by the properties of the apical membrane.  相似文献   

3.
The effects of vasopressin and cyclic AMP on water transport at arachnoid villi into the superior sagittal sinus were examined using the isolated meninges preparations of cats. The meninges preparation, the superior sagittal sinus of which was opened at the midline of the outer surface, was held between two polyethylene tubes. The tubes were fixed vertically in the way that the opened surface of the sinus was directed downward and arachnoid surface upward. Water transport was determined by measuring the tritiated water dripping through the membrane preparation. Vasopressin from less than 50 to 500 muU/ml accelerated the water transport and this effect was dose-dependent. Cyclic AMP from 0.5 to 10 mM was proved to manifest the same effect as vasopressin. This effect of cyclic AMP appeared rapidly in comparison with that of vasopressin, suggesting that the effect of vasopressin may be manifested through cyclic AMP. From these findings a physiological role of vasopressin in cerebrospinal fluid was discussed regarding the regulation of intracranial pressure.  相似文献   

4.
The study aimed at assessing the value lysozyme assay in CFS as indicator of the damage to blood-cerebrospinal fluid barrier and intensification of inflammatory process in the course of meningitis. The study involved 20 patients with suppurative and 66 with viral meningitis. Control group included 26 patients without nervous system disease. To estimate the degree of blood-cerebrospinal fluid barrier damage albumin and lysozyme indicators were calculated. It was proved, that CSF lysozyme levels are bigger in the suppurative meningitis than in viral meningitis. According to the author, CSF lysozyme levels the value of lysozyme indicator may inform on intensification of the inflammatory process and the degree of blood-cerebrospinal fluid barrier damage in suppurative meningitis, whereas in the viral meningitis they inform on degree of blood-cerebrospinal fluid barrier damage, only.  相似文献   

5.
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) are important for the maintenance of brain homeostasis. During sepsis, peripheral production of proinflammatory cytokines and reactive oxygen species are responsible for structural alterations in those brain barriers. Thus, an increasing permeability of these barriers can lead to the activation of glial cells such as microglia and the production of cytotoxic mediators which in turn act on the brain barriers, damaging them further. Thereby, in this review, we try to highlight how the brain barrier’s permeability is not only a cause but a consequence of brain injury in sepsis.  相似文献   

6.
Summary It was previously shown that ouabain decreases the potential difference across anin vitro preparation of bullfrog retinal pigment epithelium (RPE) when applied to the apical, but not the basal, membrane and that the net basal-to-apical Na+ transport is also inhibited by apical ouabain. This suggested the presence of a Na+–K+ pump on the apical membrane of the RPE. In the present experiments, intracellular recordings from RPE cells show that this pump is electrogenic and contributes approximately –10 mV to the apical membrane potential (V AP). Apical ouabain depolarizedV AP in two phases. The initial, fast phase was due to the removal of the direct, electrogenic component. In the first one minute of the response to ouabain,V AP depolarized at an average rate of 4.4±0.42 mV/min (n=10, mean ±sem), andV AP depolarized an average of 9.6±0.5 mV during the entire fast phase. A slow phase of membrane depolarization, due to ionic gradients running down across both membranes, continued for hours at a much slower rate, 0.4 mV/min. Using a simple diffusion model and K+-specific microelectrodes, it was possible to infer that the onset of the ouabain-induced depolarization coincided with the arrival of ouabain molecules at the apical membrane. This result must occur if ouabain affects an electrogenic pump. Other metabolic inhibitors, such as DNP and cold, also produced a fast depolarization of the apical membrane. For a decrease in temperature of 10°C, the average depolarization of the apical membrane was 7.1±3.4 mV (n=5) and the average decrease in transepithelial potential was 3.9±0.3 mV (n=10). These changes in potential were much larger than could be explained by the effect of temperature on anRT/F electrodiffusion factor. Cooling the tissue inhibited the same mechanism as ouabain, since prior exposure to ouabain greatly reduced the magnitude of the cold effect. Bathing the tissue in 0mm [K+] solution for 2 hr inhibited the electrogenic pump, and subsequent re-introduction of 2mm [K+] solution produced a rapid membrane hyperpolarization. We conclude that the electrogenic nature of this pump is important to retinal function, since its contribution to the apical membrane potential is likely to affect the transport of ions, metabolites, and fluid across the RPE.  相似文献   

7.
Zinc is essential for normal development and function of the CNS although much is to be learned about brain Zn homeostasis. In these experiments adult male Wistar rats within the weight range 500–600 g were used. Ventriculo-cisternal perfusion was performed to allow the measurement of65Zn fluxes between blood and csf across the choroid plexuses. Blood-brain or blood-cerebrospinal fluid barrier permeability to65Zn has been determined by graphical analysis in experiments that lasted between 5 and 180 minutes. Cerebral capillary permeability to65Zn was found to be low with a Kin of about 5×10–4ml/min/g. Choroid plexus permeability to65Zn was about 12 fold greater, although Zn influx to brain via this route was <5% that across cerebral capillaries. The autoradiographic distribution of65Zn in brain showed regional variation with lowest levels in white matter and high levels in the dentate gyrus and hippocampus.  相似文献   

8.
Cell volume regulation in liver   总被引:5,自引:0,他引:5  
The maintenance of liver cell volume in isotonic extracellular fluid requires the continuous supply of energy: sodium is extruded in exchange for potassium by the sodium/potassium ATPase, conductive potassium efflux creates a cell-negative membrane potential, which expelles chloride through conductive pathways. Thus, the various organic substances accumulated within the cell are osmotically counterbalanced in large part by the large difference of chloride concentration across the cell membrane. Impairment of energy supply leads to dissipation of ion gradients, depolarization and cell swelling. However, even in the presence of ouabain the liver cell can extrude ions by furosemide-sensitive transport in intracellular vesicles and subsequent exocytosis. In isotonic extracellular fluid cell swelling may follow an increase in extracellular potassium concentration, which impairs potassium efflux and depolarizes the cell membrane leading to chloride accumulation. Replacement of extracellular chloride with impermeable anions leads to cell shrinkage. During excessive sodium-coupled entry of amino acids and subsequent stimulation of sodium/potassium-ATPase by increase in intracellular sodium activity, an increase in cell volume is blunted by activation of potassium channels, which maintain cell membrane potential and allow for loss of cellular potassium. Cell swelling induced by exposure of liver cells to hypotonic extracellular fluid is followed by regulatory volume decrease (RVD), cell shrinkage induced by reexposure to isotonic perfusate is followed by regulatory volume increase (RVI). Available evidence suggests that RVD is accomplished by activation of potassium channels, hyperpolarization and subsequent extrusion of chloride along with potassium, and that RVI depends on the activation of sodium hydrogen ion exchange with subsequent activation of sodium/potassium-ATPase leading to the respective accumulation of potassium and bicarbonate. In addition, exposure of liver to anisotonic perfusates alters glycogen degradation, glycolysis and probably urea formation, which are enhanced by exposure to hypertonic perfusates and depressed by hypotonic perfusates.  相似文献   

9.
Streptococcus suis capsular type 2 is an important agent of diseases including meningitis among pigs worldwide, and is also a zoonotic agent. The barrier function of the choroid plexus epithelium that constitutes the structural basis for the blood-cerebrospinal fluid (CSF) barrier has not been elucidated yet in bacterial meningitis. We investigated the influence of various S. suis isolates on the barrier function of cultured porcine choroid plexus epithelial cells with respect to the transepithelial resistance and paracellular [(3)H]-mannitol flux. Preferentially apical application of S. suis isolates significantly decreased transepithelial resistance and significantly increased paracellular [(3)H]-mannitol flux in a time-, dose- and strain-dependent manner. Viable S. suis isolates caused cytotoxicity determined by lactate dehydrogenase assay and electron microscopy, whereas S. suis sonicates and UV-inactivated S. suis did not cause cytotoxicity. The observed effects on porcine choroid plexus epithelial cells barrier function could not exclusively be ascribed to known virulence factors of S. suis such as suilysin. In conclusion, S. suis isolates induce loss of blood-cerebrospinal fluid barrier function in an in vitro model. Thus, S. suis may facilitate trafficking of bacteria and leucocytes across the blood-cerebrospinal fluid barrier. The underlying mechanisms for the barrier breakdown have yet to be determined.  相似文献   

10.
The specific binding and inhibitory action of (3H)ouabain were employed to localize transport Na,K-ATPase in the euryhaline teleost gill, a NaCl-transporting osmoregulatory tissue in which both enzyme activity and transepithelial transport vary with environmental salinity. In killifish fully adapted to 10%, 100%, or 200% seawater, the gills were internally perfused and externally irrigated in situ. After suitable internal or external exposure to (3H)ouabain, individual gill arches were excised for Na,K-ATPase assay, measurement of radiolabel binding, or quantitative high-resolution autoradiography. Internal exposure to 50 muM ouabain resulted in essentially complete enzyme inhibition, and binding paralleled the increases in enzyme activity at higher salinities; in contrast, external exposure gave minimal and erratic results consistent with leakage of external ouabain into interstitial fluid. (3H)Ouabain autoradiographs demonstrated that, irrespective of exposure or salinity, most of the gill binding was associated with chloride cell. These cells increased in size and number with salinity and, at the subcellular level, the distribution pattern for bound ouabain was always identical to that for the amplified basal-lateral (tubular system) membrane. The combined physiologicmorphologic results constitute final direct proof that chloride cells are the primary site of gill Na,K-ATPase. More important, they provide convincing evidence for unexpected increases in basal-lateral enzyme at higher salinities and thus raise a fundamental objection to the long-postulated role of the Na pump in secretory NaCl transport.  相似文献   

11.
Glutamine has multiple physiological and pathophysiological roles in the brain. Because of their position at the interface between blood and brain, the cerebral capillaries and the choroid plexuses that form the blood-brain barriers (BBB) and blood-cerebrospinal fluid (CSF) barriers, have the potential to influence brain glutamine concentrations. Despite this, there has been a paucity of data on the mechanisms and polarity of glutamine transport at these barrier tissues. In situ brain perfusion in the rat, indicates that blood to brain L-[14C]glutamine transport at the blood-brain barrier is primarily mediated by a pH-dependent, Na(+)-dependent, System N transporter, but that blood to choroid plexus transport is primarily via a pH-independent System N transporter and a Na(+)-independent carrier that is not System L. Transport studies in isolated rat choroid plexuses and primary cultures of choroid plexus epithelial cells indicate that epithelial L-[14C]glutamine transport is polarized (apical uptake>basolateral) and that uptake at the apical membrane is mediated by pH dependent System N transporters (identified as SN1 and SN2 by polymerase chain reaction) and the Na(+)-independent System L. Blood-brain barrier System N transport is markedly effected by cerebral ischemia and may be a good marker of endothelial cell dysfunction. The multiple glutamine transporters at the blood-brain and blood-CSF barriers may have role in meeting the metabolic needs of the brain and the barrier tissues themselves. However, it is likely that the main role of these transporters is removing glutamine, and thus nitrogen, from the brain.  相似文献   

12.
Net fluid transport (Jv) and electrical properties of the cell membranes and paracellular pathway of Necturus gallbladder epithelium were studied before and after the addition of ouabain (10(-4) M) to the serosal bathing medium. The glycoside inhibited Jv by 70% in 15 min and by 100% in 30 min. In contrast, the potentials across both cell membranes did not decrease significantly until 20 min of exposure to ouabain. At 30 min, the basolateral membrane potential (Vcs) fell only by ca 7 mV. If basolateral Na transport were electrogenic, with a coupling ratio (Na:K) of 3:2, the reductions of Vcs at 15 and 30 min should be 12--15 and 17--21 mV, respectively. Thus, we conclude that the mechanism of Na transport from the cells to the serosal bathing solution is not electrogenic under normal transport conditions. The slow depolarization observed in ouabain is caused by a fall of intracellular K concentration, and by a decrease in basolateral cell membrane K permeability. Prolonged exposure to ouabain results also in an increase in paracellular K selectivity, with no change of P Na/P Cl.  相似文献   

13.
The basolateral membrane of the jejunal enterocyte of the rat was separated by self-orienting Percoll-gradient centrifugation and further purified from brush border contamination. Pellets were analysed for Mg-, Na- and (Na, K)-ATPase activities. The uptake of 0·02 M NaCl was also followed by the rapid micro-filtration technique. Transintestinal transport of fluid and electrolytes, and cell water, Na and K were determined in the in vitro everted and incubated jejunum. There is ouabain-insensitive Na-ATPase in addition to the well-known (Na, K)-ATPase in the basolateral membrane. These are differently inhibited by furosemide and ethacrynate. Na uptake by osmotically active basolateral membrane vesicles is enhanced by ATP and a further enhancement is obtained if there is intravesicular K. The ATP effect is inhibited differently by strophanthidin, furosemide and ethacrynate. In the everted sac preparation, transintestinal transport of Na and fluid still occurs when the Na/K pump is totally inhibited by ouabain. These experimental results suggest that there is also a ouabain-insensitive Na pump, different from the Na/K pump, in the basolateral membrane.  相似文献   

14.
In this study the relative ionic permeabilities of the cell membranes of Necturus gallbladder epithelium have been determined by means of simultaneous measurement of transmural and transmucosal membrane potential differences (PD) and by ionic substitution experiments with sodium, potassium and chloride ions. It is shown that the mucosal membrane is permeable to sodium and to potassium ions. The baso-lateral membrane PD is only sensitive to potassium ions. In both membranes chloride conductance is negligible or absent. The ratio of the resistances of the mucosal and baso-lateral membranes, RM/RS, increases upon reducing the sodium concentration in the mucosal solution. The same ratio decreases when sodium is replaced by potassium which implies a greater potassium than sodium conductance in the mucosal membrane. The relative permeability of the shunt for potassium, sodium and chloride ions is: PK/PNa/PCl=1.81:1.00:0.32. From the results obtained in this study a value for the PK/PNa ratio of the mucosal membrane could be evaluated. This ratio is 2.7. From the same data the magnitude of the electromotive forces generated across the cell membranes could be calculated. The EMF's are -15mV across the mucosal membrane and -81mV across the baso-lateral one. Due to the presence of the low resistance shunt the transmucosal membrane PD is -53.2mV (cell inside negative) and the transmural PD is +2.6mV (serosal side positive). The change in potential profile brought about by the low resistance shunt favors passive entry of Na ions into the cell across the mucosal membrane. Calculations show that this passive Na influx is maximally 64% of the net Na flux estimated from fluid transport measurements. The C-1 conductive of the baso-lateral membrane is too small to allow electrogenic coupling of C1 with Na transport across this membrane. Experiments with rabbit gallbladder epithelium indicate that the membrane properties in this tissue are qualitatively similar to those of Necturus gallbladder epithelium.  相似文献   

15.
Ouabain circulating in blood inhibits Na-K-ATPase in the gills of seawater eels at a concentration similar to that necessary for inhibition in vitro. By contrast, a much higher concentration is required when ouabain is applied to the exterior of the gill. Inhibition by external ouabain occurs only when the drug gains access to the circulation of the fish, as evidenced by simultaneous inhibition of Na-K-ATPase in the kidney. These results suggest that the Na-K-ATPase of gill chloride cells faces inward, lining intracytoplasmic tubular channels continuous with the extracellular fluid. Inhibition of gill Na-K-ATPase by ouabain in intact salt water eels results in almost complete inhibition of the efflux of both Na+ and Cl-. The efflux is tritiated water was much less reduced, to 60% of normal. Since chloride is actively transported outward across the gill of seawater teleosts, it is suggested that active chloride transport is coupled to Na-K-ATPase. A neutral sodium chloride carrier is postulated that is energized by the movement of sodium from extracellular fluid down its electrochemical gradient into the chloride cell.  相似文献   

16.
Transport of Tl+ and Rb+ in human and rat erythrocytes was investigated in the presence of ouabain. The chloride-dependent cotransport of Tl+, Rb+ and Na+ was precluded by replacement of Cl- by NO3-. The inward and outward rate constants for the residual fluxes of the cations were determined by measuring the transport of 204Tl and 86Rb in double label experiments. The rate of passive transport of Tl+ exceeded that of Rb+ by one-two orders of magnitude in human as well as rat erythrocytes. The membrane barrier which contributes to the maintenance of ion gradients was shown not to be a barrier for Tl+ which easily penetrates the membrane by an unknown mechanism. In rat erythrocytes the barrier for Rb+ was 10-15 times weaker than that in human red blood cells, while the corresponding ratio of rat/human Tl+ permeabilities was about 1.8-2.0. It follows that Tl+ permeability is only slightly affected by factors modifying the permeability to alkali cations. The increase of temperature from 20 degrees to 37 degrees C resulted in a three-fourfold stimulation of the passive transport of Tl+ both in human and rat erythrocytes. The movement of Tl+ and Rb+ through the erythrocyte membrane differed substantially from their diffusion along the excitable membrane channels characterized both by poor Tl+/K+ selectivity and weak temperature dependence.  相似文献   

17.
18.
The isolated rabbit caecum was studied in vitro. Under our experimental conditions, the rabbit caecum secreted potassium and chloride and absorbed sodium. To characterize the transport properties of the apical and the basolateral barriers, transepithelial electrical and flux (22Na, 36Cl and 86Rb) measurements and their sensitivity to transport inhibitors (furosemide, DIDS, ouabain and barium) are presented together with intracellular measurements with double-barrelled microelectrodes of intracellular electrical potentials and ionic activities. The fluxes of sodium and chloride were insensitive to DIDS and furosemide. The secretion of potassium and the absorption of sodium were both inhibited by ouabain, indicating that they are coupled through the sodium pump. Ouabain induced a slow fall in the chloride net fluxes, suggesting that these fluxes are also driven by the sodium pump, albeit indirectly. The basolateral to apical fluxes of potassium are insensitive to barium added to the apical side, but are accelerated by the replacement of chloride by gluconate on the apical side, suggesting the presence of a K+/Cl- symport in the apical barrier.  相似文献   

19.
The effects of starvation and undernourishment on the potential differences (pd in mV), basal short-circuit current (Isc in microA/cm(2)), resistance (R in omega) and glucose-dependent short-circuit current (Isc in microA/cm(2)) across stripped sheets of proximal, mid and distal colon of the gerbil (Gerbillus cheesmani) were investigated. The effects of replacing sodium chloride by lithium chloride, replacing chloride in Krebs buffer by gluconate and removing bicarbonate from bathing buffers were also investigated. Starvation (4 days, water ad lib) and undernourishment (50% control food intake for 21 days) had no significant changes on pd and R of the three regions of stripped colon. Starvation increased the basal Isc in the proximal and the mid-colon only while undernourishment increased the basal Isc of three regions of the colon. In addition, starvation and undernourishment increased the glucose-dependent Isc in the three regions. Replacing sodium chloride by lithium chloride caused a slight decrease in the basal Isc of proximal and mid colon taken from starved animals. In undernourished gerbils, although there was a slight decrease in basal Isc of proximal and mid colon the big decrease was observed in Isc of the distal colon. Replacing chloride by gluconate had no effect on the Isc of the different regions of colon taken from fed and starved animals but decreased the Isc of the three regions of undernourished animals. The absence of bicarbonate reduced the Isc of proximal and mid colon taken from starved gerbils and those of three regions taken from undernourished animals. The results of the present study suggest that the Isc of proximal and mid colon from starved gerbils could result from active sodium transport together with bicarbonate secretion while the Isc of the three regions taken from undernourished gerbils results from active sodium absorption together with both chloride and bicarbonate secretion.  相似文献   

20.
Energetics of coupled active transport of sodium and chloride   总被引:4,自引:4,他引:0  
A Clark electrode was used to measure oxygen consumption by the gall bladder, in which there is a direct and one-to-one linkage between active Na and active Cl transport. O2 uptake was reversibly depressed when Cl in the mucosal bathing solution was replaced by a poorly transported anion, such as sulfate. This effect of Cl was abolished by ouabain or in Na-free solutions. When the anion was chloride, treatment with ouabain or replacement of Na by a poorly transported cation depressed QO2 more than did replacement of Cl. However, ouabain or removal of Na also depressed QO2 in Na2SO4 solutions, in which salt transport is minimal. It is concluded that oxygen uptake in the gall bladder consists of three fractions: 9% requires both Na and Cl, is inhibited by ouabain, and is linked to the NaCl pump; 36% requires Na but not Cl, is inhibited by ouabain, and possibly is linked to the cellular K uptake mechanism; and 55% represents basal uptake. If the extra oxygen uptake observed during transport supplies all the energy for transport, then 25 Na + 25 Cl ions are transported actively per O2 consumed; i.e., twice as many ions as in epithelia which transport only Na actively. This extra uptake is more than sufficient to supply the energy for overcoming internal membrane resistance under the experimental conditions used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号