首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of simian virus 40 gene A function in maintenance of transformation.   总被引:108,自引:73,他引:35       下载免费PDF全文
Mouse, hamster, and human cells were transformed at the permissive temperature by mutants from simian virus 40 (SV40) complementation group A in order to ascertain the role of the gene A function in transformation. The following parameters of transformation were monitored with the transformed cells under permissive and nonpermissive conditions: morphology; saturation density; colony formation on plastic, on cell monolayers, and in soft agar; uptake of hexose; and the expression of SV40 tumor (T) and surface (S) antigens. Cells transformed by the temperature-sensitive (ts) mutants exhibited the phenotype of transformed cells at the nonrestrictive temperature for all of the parameters studied. However, when grown at the restrictive temperature, they were phenotypically similar to normal, untransformed cells. Growth curves showed that the (ts) A mutant-transformed cells exhibited the growth characteristics of wild-type virus-transformed cells at the permissive temperature and resembled normal cells when placed under restrictive conditions. There were 3-to 51-fold reductions in the levels of saturation density, colony formation, and uptake of hexose when the mutant-transformed cells were the elevated temperature as compared to when they were grown at the permissive temperature. Mutant-transformed cells from the nonpermissive temperature were able to produce transformed foci when shifted down to permissive conditions, indicating that the phenotypically reverted cells were still viable and that the reversion was a reversible event. SV40 T antigen was present in the cells at both temperatures, but S antigen was not detected in cells maintained at the nonpremissive temperature. All of the wild-type virus-transformed cells exhbited a transformed cells exhibited a transformed phenotype when grown under either restrictive or nonrestrictive conditions. Thers results indicate that the SV40 group A mutant-transformed cells are temperature sensitive for the maintenance of growth properties characteristics of transformation. Virus rescued from the mutant-transformed cells by the transfection method was ts, suggesting that the SV40 gene A function, rather than a cellular one, is responsible for the ts behavior of the cells.  相似文献   

2.
The growth properties of hamster cells transformed by wild-type Simian virus 40 (SV40), by early SV40 temperature-sensitive mutants of the A complementation group, and by spontaneous revertants of these mutants were studied. All of the tsA mutant-transformed cells were temperature sensitive in their ability to form clones in soft agar and on monolayers of normal cells except for CHLA-30L1, which was not temperature sensitive in the latter property. All cells transformed by stable revertants of well-characterized tsA mutants possessed certain growth properties in common with wild-type-transformed cells at both temperatures. Virus rescued from tsA transformants including CHLA30L1 was temperature sensitive for viral DNA replication, whereas that rescued from revertant and wild-type transformants was not thermolabile in this regard. T antigen present in crude extracts of tsA-transformed cells including CHLA30L1, grown at 33 degreeC, was temperature sensitive by in vitro immunoassay, whereas that from wild-type-transformed cells was relatively stable. T antigen from revertant transformants was more stable than the tsA protein. Partially purified T antigen from revertant-transformed cells was nearly as stable as wild-type antigen in its ability to bind DNA after heating at 44 degrees C, whereas T antigen from tsA30 mutant-transformed cells was relatively thermolabile. These results further indicate that T antigen is a product of the SV40 A gene. Significantly more T antigen was found in extracts of CHLA30L1 grown to high density at the nonpermissive temperature than in any other tsA-transformed cell similarly grown. This is consistent with the suggestion that the amount of T antigen synthesized in CHLA30L1 is large enoughto allow partial expression of the transformed phenotype at the restrictive temperature. Alternatively, the increase in T antigen concentration may be secondary to one or more genetic alterations that independently affect the transformed phenotype of these cells.  相似文献   

3.
The simian virus 40-induced tumor-specific surface antigen(s) (TSSA) and tumor-specific transplantation antigen(s) (TSTA)were detected in cells transformed by wild-type or temperature-sensitive mutant simian virus 40 by an antibody-mediated cytolytic assay for TSSA and an immunization test for TSTA. Cells transformed by tsA mutants, which lose their transformed phenotype when grown at nonpermissive temperatures, nonetheless do express TSSA and TSTA as well as T-antigen at both temperatures.  相似文献   

4.
We have explored aspects of a suggested relationship between the expression of simian virus 40 tumor-specific transplantation antigen (TSTA) and tumor antigen (TA). A unique rat embryo cell line transformed by a temperature-sensitive A mutant that loses TA during exposure to the nonpermissive temperature (A28-RE) was found to lose TSTA. On the other hand, a typical control tsA-transformed cell line (A239-MB) expressed both TA and TSTA at the non-permissive temperature. TA in lysates obtained from A239-MB cells was found to be three to four times more thermolabile by covwt-mb) when incubated at either 33 or 40 degrees C. These data complement previous reports using TA from lytic infection and are consistent with the suggestion that TA is virus encoded. In contrast to TA, which even in wild-type-transformed cells was completely destroyed in less than 10 min at 50 degrees C, TSTA, assayed in vivo by tumor rejection, and tumor-specific surface antigen(s) TSSA) defined by an in vitro cytolytic assay, were thermostabile. Even after 24 h of incubation of extracts of 50 degrees C, high levels of TSTA and TSSA activity were present. Since these surface antigens when obtained from cells transformed by tsA mutants were also thermostabile, they could not be distinguished from the wild-type antigens. These results (i) indicate a coordinate expression of TA and TSTA in transformed cells; (ii) confirm that TA is virus encoded; and (iii) confirm that tha antigenic and immunogenic determinants that characterize TA and TSTA activities are distinct. However, the possibility that TSTA, like TA, is of viral rather than cellular origin is not excluded.  相似文献   

5.
The transformed or normal phenotype of cultured normal rat kidney cells infected with a temperature-sensitive mutant of avian sarcoma virus is conditional on the temperature at which the cells are grown. Using dye injection techniques, we show that junction-mediated dye transfer is also temperature-sensitive. The extent and rate of transfer between infected cells grown at the transformation-permissive temperature (35 degrees C) is significantly reduced when compared to infected cells grown at the nonpermissive temperature (40.5 degrees C) or uninfected cells grown at either temperature. Infected cells subjected to reciprocal temperature shifts express rapid and reversible alterations of dye transfer capacities, with responses evident by 15 min and completed by 60 min for temperature shifts in either direction. These results suggest that altered junctional capacities may be fundamental to the expression of the ASV-induced, transformed phenotype.  相似文献   

6.
S Ray  M E Anderson    P Tegtmeyer 《Journal of virology》1996,70(10):7224-7227
Previous studies have shown that simian virus 40 large T antigen transforms cells by binding and inactivating suppressors of cell cycle progression and tumor formation. Here, we characterize the interactions of five temperature-sensitive T antigens with the tumor suppressor proteins pRb and p53. All five mutant T antigens bind pRb at the nonpermissive temperature with efficiencies similar to that of wild-type T antigen. A single transformation-competent mutant, with a substitution of amino acid 186, binds p53 at the nonpermissive temperature. Four transformation-defective mutants, with a substitution at T antigen position 357, 422, 427, or 438, are temperature sensitive for the binding and inactivation of p53. Our findings provide a basis for understanding the behavior of cells transformed by temperature-sensitive T antigens.  相似文献   

7.
The function of the A gene of simian virus 40 (SV40) in transformation of BALB/c-3T3 cells was investigated by infecting at the permissive temperature with wild-type SV40 and with six tsA mutants whose mutation sites map at different positions in the early region of the SV40 genome. Cloned transformants were then characterized as to the temperature sensitivity of the transformed phenotype. Of 16 tsA transformants, 15 were temperature sensitive for the ability to overgrow a monolayer of normal cells, whereas three of three wild-type transformants were not. This pattern of temperature sensitivity of the transformed phenotype was also observed when selected clones were assessed for the ability to grow in soft agar and in medium containing low concentration of serum. The temperature resistance of the one exceptional tsA transformant could be attributed neither to the location of the mutation site in the transforming virus nor to transformation by a revertant virus. This temperature-resistant tsA transformant, however, was demonstrated to contain a higher intracellular concentration of SV40 T antigen than a temperature-sensitive line transformed by the same tsA mutant. A tsA transformant displaying the untransformed phenotype at the nonpermissive temperature was found to be susceptible to retransformation by wild-type virus at this temperature, demonstrating that the temperature sensitivity of the tsA transformants is due to the viral mutation and not to a cellular defect. These results indicate that continuous expression of the product of the SV40 A gene is required to maintain the transformed phenotype in BALB/c-3T3 cells.  相似文献   

8.
BHK-21 cells infected with temperature-sensitive mutants of herpes simplex virus type 1 strain KOS representing 16 complementation groups were tested for susceptibility to complement-mediated immune cytolysis at permissive (34 degrees C) and nonpermissive (39 degrees C) temperatures. Only cells infected by mutants in complementation group E were resistant to immune cytolysis in a temperature-sensitive manner compared with wild-type infections. The expression of group E mutant cell surface antigens during infections at 34 and 39 degrees C was characterized by a combination of cell surface radioiodination, specific immunoprecipitation, and gel electrophoretic analysis of immunoprecipitates. Resistance to immune lysis at 39 degrees C correlated with the absence of viral antigens exposed at the cell surface. Intrinsic radiolabeling of group E mutant infections with [14C]glucosamine revealed that normal glycoproteins were produced at 34 degrees C but none were synthesized at 39 degrees C. The effect of 2-deoxy-D-glucose on glycosylation of group E mutants at 39 degrees C suggested that the viral glycoprotein precursors were not synthesized. The complementation group E mutants failed to complement herpes simplex virus type 1 mutants isolated by other workers. These included the group B mutants of strain KOS, the temperature-sensitive group D mutants of strain 17, and the LB2 mutant of strain HFEM. These mutants should be considered members of herpes simplex virus type 1 complementation group 1.2, in keeping with the new herpes simplex virus type 1 nomenclature.  相似文献   

9.
Phenotypic expression of the murine intraspecies and interspecies antigenic determinants of the major type C viral structural 30,000-dalton polypeptide, p30, was measured by radioimmunoassay inhibition in cell lines from different species. Uninfected normal rat kidney (NRK) cells did not contain detectable levels of murine intraspecies and interspecies p30 antigen, whereas rat cells transformed by and producing murine sarcoma virus (MSV)-Moloney leukemia virus (M-MSV-MuLV) contained high levels of both murine intraspecies and interspecies p30 antigen. Significant amounts of murine intraspecies and interspecies p30 antigen were detected in wild-type MSV-transformed nonproducer NRK cells. The control of p30 antigen expression was examined in temperature-sensitive MSV-transformed nonproducer cells [NRK(MSV-1b)] which are cold sensitive for maintenance of the transformed phenotype. Both murine intraspecies and interspecies p30 antigens were detected in NRK(MSV-1b) cells when grown at the permissive (39 C) or nonpermissive (33 C) temperature, suggesting that p30 antigen expression is not correlated with maintenance of the transformed phenotype. The results demonstrate that previously undetectable p30 antigens are expressed in MSV-transformed nonproducer NRK cells, and suggest that the expression of p30 antigen may be a useful marker for viral gene expression in mammalian cells.  相似文献   

10.
The antigenic phenotypes of several temperature-sensitive mutants of simian virus 40 were determined by an immunofluorescence microtechnique that allowed a very high degree of internal control for the conditions of virus infection and antigenic staining. The tumor (T), U, capsid protein (C), and virion (V) antigens were investigated. Productive infection in monkey cells and abortive infection in mouse cells were simultaneously monitored for antigen production at both permissive and restrictive temperatures. Complementation analyses of the mutants demonstrated two complementing groups (A and B) and one noncomplementing group ((*)). One of the complementing groups could be subdivided into two subgroups having very different antigenic phenotypes. The following phenotypes were observed at the restrictive temperature in monkey cells. (i) The noncomplementing group produced none of the antigens. (ii) Group A induced T antigen in moderately but consistently reduced numbers of cells. Other antigens were markedly reduced or absent. (iii) Some of the group B mutants produced T antigen but little or no U and V antigens. The C antigen appeared in the nucleolus and cytoplasm of this subgroup. (iv) In the other group B mutants, antigen synthesis was not altered. Similar phenotypes were observed in mouse cells, except that U, C, and V antigens could not be detected during either the mutant or wild-type virus infections at any temperature.  相似文献   

11.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

12.
The myeloproliferative sarcoma virus is molecularly related to the Moloney sarcoma virus (Pragnell et al., J. Virol. 38:952-957, 1981), but causes both fibroblast transformation in vitro and leukemic changes--including spleen focus formation--in adult mice. The fibroblast transforming properties of myeloproliferative sarcoma virus were used to select viral temperature-sensitive mutants at 39.5 degrees C, the nonpermissive temperature. These mutants are temperature sensitive in the maintenance of the transformed state. This was also shown by cytoskeletal changes of the infected cells at permissive and nonpermissive temperatures. Viruses released from cells maintained at both the permissive and nonpermissive temperature are temperature sensitive in fibroblast transformation functions. All temperature-sensitive mutants show only a low reversion rate to wild-type transforming function. The myeloproliferative sarcoma virus temperature-sensitive mutants are inefficient in causing leukemic transformation (spleen enlargement, focus formation) in mice at the normal temperature. A method to maintain a low body temperature (33 to 34 degrees C) in mice is described. One temperature-sensitive mutant was checked at low body temperature and did not induce leukemia. These data thus indicate that the same or related viral functions are responsible for hematopoietic and fibroblast transformation.  相似文献   

13.
G Poste  M K Flood 《Cell》1979,17(4):789-800
Chick embryo (CE) fibroblasts and normal rat kidney (NRK) cells transformed by temperature-sensitive (ts) mutants of avian sarcoma virus (NY68, LA23, LA24, LA25, LA29, LA31, GI201, GI202, GI251, GI253 induce tumors on the chorioallantoic membrane (CAM) of chick eggs at temperatures that correspond to the permissive and nonpermissive temperatures used to induce conditional expression of the "transformed" phenotype in these cells when cultured in vitro. Chick embryo cells infected with transformation-defective mutants of ASV (td101, td108) or RAV-50 were nontumorigenic under the same conditions, as were nontransformed CE and NRK cells. This indicates that the CAM is not an unusually susceptible substrate for cell growth and that the ability of tsASV-transformed cells to form tumors at nonpermissive temperatures reflects their true tumorigenicity. In contrast, a ts mutant chemically transformed rat liver cell line, ts-223, only formed tumors on the CAM under permissive conditions. The wild-type parent cells (W-8) of this mutant produced tumors at both permissive and nonpermissive temperatures. Direct implantation of microprobe thermometers into tumors caused by ts-ASV-transformed cells at nonpermissive temperatures confirmed that tumor formation occurred in a stable temperature environment and was not due to temperature fluctuations which might have created semi-permissive conditions for tumor growth. Cells isolated from tumors formed at nonpermissive temperatures and recultured in vitro displayed temperature-dependent hexose transport and colony formation in agar similar to the orginal parent cell inoculum. Similarly, virus recovered from tumors at nonpermissive temperatures retained the ts mutation.  相似文献   

14.
Simian virus 40 gene A function and maintenance of transformation.   总被引:107,自引:70,他引:37       下载免费PDF全文
Transformants have been isolated after infection of rat embryo cells at 33 C with either wild-type simian virus 40 or with the temperature-sensitive gene A mutants, tsA7 and tsA28. Examination of properties usually associated with transformation such as growth in 1% serum, growth rate, saturation density, and morphology show that these properties are temperature dependent in the tsA transformants characterized, but are not temperature dependent in the wild-type transformants that have been examined. In the most thoroughly characterized tsA transformants the expression of T antigen also appears to be temperature dependent. These data suggest that an active A function is required for the maintenance of transformation in these cells. In the lytic cycle, the A function is involved in the initiation of DNA synthesis. Thus transformation by simian virus 40 may be the direct consequence of the introduction of the simian virus 40 replicon and the presence of its DNA initiator function, which causes the cell to express a transformed phenotype.  相似文献   

15.
We have investigated the functional roles of two structural subsets of simian virus 40 (SV40) large T antigen, namely homo-oligomers and complexes with the host cellular p53 protein, for the transformed phenotype. We examined T antigen produced in cells transformed by temperature-sensitive SV40 large T mutants: heat-sensitive or unrestricted SV40 tsA58-transformed rat cells and unrestricted tsA1499 transformants. In both unrestricted cell lines, T antigen was temperature-sensitive only for the formation of fast sedimenting homo-oligomers. Corresponding to our recent observations obtained with tsA1499-infected monkey cells, in tsA1499 transformants large T was competent to form stable T-p53 complexes independently of the temperature. However, T antigen coded for by tsA58, which is heat-sensitive for binding to p53, occurred in stable complexes with this protein in unrestricted tsA58 transformants under all conditions. Furthermore, in both unrestricted transformants T-p53 complexes arise in the absence of homo-oligomers of T antigen. In conclusion, T antigen homo-oligomers are not involved in cell transformation, whereas T-p53 complexes may be involved in the maintenance of this phenotype.  相似文献   

16.
Lesions that promote reversion from a temperature-sensitive to a wild-type phenotype were induced in temperature-sensitive late mutants of SV40 virus by UV irradiation. When cultures infected with UV-irradiated temperature-sensitive mutants were grown for various times at permissive temperature (35 degrees C) and then at restrictive temperature (39 degrees C), the reversion frequency declined just before the onset of semiconservative DNA synthesis when DNA synthesis began at 32 degrees C. This can be explained by competition between reactions that lead to the onset of viral DNA synthesis and reactions that repair the lesions before the onset of viral DNA synthesis.  相似文献   

17.
Survival and mutagenesis of UV-irradiated, temperature-sensitive simian virus 40 mutants (SV40) have been studied after infection of human fibroblasts. Survival of the viral progeny obtained after 6,8 or 10 days at permissive temperature decrease as a function of the UV-dose delivered to the virus. In cels which have been pretreated with 10 Jm-2 of UV 24 hours before infection, progeny survival was increased as compared to survival in control cells. The reactivation factor varies from one to ten, depending on the number of lytic cycles carried out at permissive temperature. The level of mutation frequency, as measured by the reversion from a temperature sensitive growth phenotype towards a wild type phenotype, increases with the dose of UV-irradiation given to the virus. Moreover, the mutation frequency is increased in the viral progeny produced in UV-irradiated human cells. Similar experiments carried out with SV40-transformed human fibroblasts, which constitutively express SV40 T antigen, gave comparable results. These experiments show that, as in monkey cells, a new error-prone recovery pathway can be induced by pretreating human cells with UV-light before infection.  相似文献   

18.
Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation.  相似文献   

19.
Tumor antigens induced by nontransforming mutants of polyoma virus.   总被引:48,自引:0,他引:48  
J Silver  B Schaffhausen  T Benjamin 《Cell》1978,15(2):485-496
We have studied the tumor (T) antigens induced by wild-type polyoma virus and several nontransforming mutants using immunoprecipitation with antisera from animals bearing polyomya-induced tumors followed by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis. In a variety of mouse cells, wild-type virus induces a major T antigen species with apparent molecular weight of 100,000 daltons, and four minor T antigen species with apparent molecular weights of 63,000, 56,000, 36,000 and 22,000 daltons. Hr-t mutants, which have an absolute defect in transformation, induce a normal 100,000 dalton T antigen but are altered in the minor T antigen species. Hr-t deletion mutants induce none of the minor T antigen species seen in wild-type virus. In their place, these mutants induce T antigen species with molecular weights in the range of 6,000--9,000 daltons. The size of the very small T antigen products does not correlate in any simple way with the size or location of the deletions in the viral DNA. Point hr-t mutants induce two of the four minor T antigen species; they make apparently normal amounts of the 56,000 dalton product and reduced amounts of the 22,000 dalton product, but none of the 63,000 or 36,000 dalton species. Ts-a mutants, which have a temperature-sensitive defect in the ability to induce stable transformation, and which complement hr-t mutants, induce T antigens with the same mobility as wild-type; however, the 100,000 dalton T antigen of ts-a mutants is thermolabile compared to wild-type. A double mutant virus carrying both a ts-a mutation and a deletion hr-t mutation induces a thermolabile 100,000 dalton product and none of the minor T antigen species. Cell fractionation studies with productively infected cells have been carried out to localize the T antigen species.  相似文献   

20.
Polycaryocyte formation mediated by Sindbis virus glycoproteins.   总被引:13,自引:10,他引:3       下载免费PDF全文
E Mann  J Edwards    D T Brown 《Journal of virology》1983,45(3):1083-1089
The process of cell fusion mediated by Sindbis virus membrane proteins synthesized after infection was examined. At the times after infection at which virus proteins were detectable on the cell surface, Sindbis virus-infected BHK-21 cells were found to express a fusion function after brief treatment at acid pH. In studies employing wild-type virus and temperature-sensitive mutants and testing drug or protease inhibition of virus production, we made the following observations on Sindbis virus-mediated fusion from within. (i) Fusion requires the synthesis of virus glycoproteins and their transport to the cell surface. (ii) Modification of the cell plasma membrane by polypeptides PE2 and E1 alone is not sufficient for expression of the fusion function. (iii) The proteolytic conversion of plasma membrane-associated PE2 to E2 is not essential for fusion. (iv) Glycosylation of virus plasma membrane proteins is essential for fusion. (v) The lesions of Sindbis virus temperature-sensitive mutants do not affect their ability to fuse cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号