首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avian tumour virus-infected chick embryo fibroblasts express new antigens, identical with the viral envelope antigens, in their plasma membranes. Electron-microscopic examination of carbon-platinum replicas of cells labelled with haemocyanin-marked antibody has shown the distribution of these antigens to be diffuse over the cell surface with an increased concentration on peripheral cell processes. However, antigen-antibody complexes (AAC), resulting from reaction with specific antibody, may be redistributed into a variety of patterns. Observation of the time course of antibody-induced antigen mobility revealed a rapid and a delayed phase of redistribution. During the rapid phase (10 min or less) some of the antigen-bearing cells reorganized AAC into patches, while the remainder maintained a diffuse distribution. A fraction of the cells with either diffuse or patchy distribution also redistributed AAC into a pattern of 'marginal redistribution (MR)', consisting of linear aggreagation of AAC, at the cell edge. During the 'late' phase of redistribution (after about 20 min), AAC began to condense into one or more foci of coalescence (FC) on each cell. As the number of cells with FC increased with time, the fraction of cells which were labelled decreased. Electron-microscopic observation of thin sections of ferritin-labelled specimens indicated that AAC were lost by endocytosis and that this process was probably related to FC formation. Inhibitors of oxidative phosphorylation, protein synthesis, RNA synthesis, or microtubule assembly had no significant effect on the patterns or the course of redistribution. Iodoacetic acid (IAA), which depletes cellular ATP, and cytochalasin B (CB), which is believed to depolymerize microfilaments, partially inhibited MR and completely prevented FC formation and endocytosis. Paradoxically, IAA or CB-treated cells lost AAC very rapidly by some alternate mechanism not involving FC formation but which may entail a centrifugal migration of complexes to the cell extremities during the process of AAC disposal.  相似文献   

2.
The distribution of neoantigens in the surface membrane of avian tumor virus-infected chicken embryo fibroblasts was examined on carbon replicas of cell cultures using hemocyanin-labeled antibody. New determinants appearing on the cell surface of virally infected but not transformed cells are thought to be common with components of the viral envelope. These antigens were found to exist in a diffuse, random array on the dorsal cell surface, with a denser accumulation along the cell processes. In living cells, surface antigens are capable of several types of redistribution when activated by reaction with antibody. Leukosis virus-infected (non-transformed) cells showed two apparently independent modes of redistribution: a relocation of some antibody-related sites to the cell margin; or an involvement of essentially all sites in randomly dispersed aggregates. Viral antigenic sites on sarcoma virus-infected (transformed) cells, reacted with antibody, were able to produce weak marginal relocation; but revealed a more striking tendency to migrate to some central location. The centripetal coalescence thus formed resembles the "cap" noted in other systems. Prior aggregation into "patches" may not be a prerequisite for such cap formation. Tumor-specific surface antigen detection and mapping was attempted by this technique, but results were equivocal. An antigen possibly characteristic of rapidly dividing cells occurred in a sparse, diffuse fashion over the surface of morphologically distinct "round" cells.  相似文献   

3.
The paired radioiodine-labeled antibody technique (PRILAT) was applied to the detection and quantitation of avian tumor virus group-specific (gs) antigens and antibody. The technique proved to be specific, repeatable, and appreciably more sensitive than the microcomplement-fixation test for avian leukosis (COFAL). The PRILAT facilitated direct measurement of comparative antigen content of several types of transformed, neoplastic, or virus-infected cells and the magnitude of nonspecific antibody binding by appropriate control cells. The versatility of the technique was illustrated by application to the detection and quantitation of gs antibody content of chicken, turkey, pigeon, and hamster sera. Antibodies were detected in COFAL-negative sera from hamsters bearing tumors induced by the Schmidt-Ruppin strain of Rous sarcoma virus. Sera from chickens bearing similar tumors were not positive for gs antibodies, although sera from turkeys and chickens immunized with avian leukosis virus did contain gs antibodies.  相似文献   

4.
Stationary chicken embryo fibroblasts exposed to Rous sarcoma virus (RSV) remained stably infected for at least 5 days, but they did not release infectious virus or become transformed until after cell division. These infected stationary cells did not contain avian leukosis virus group-specific antigens or ribonucleic acid (RNA) hybridizable to deoxyribonucleic acid (DNA) made by the RSV endogenous RNA-directed DNA polymerase activity.  相似文献   

5.
Japanese quails bearing avian sarcoma virus-induced tumors develop immune spleen cells that are cytotoxic in vitro against virally and chemically transformed cells, as well as against embryonic cells. The cell-mediated cytotoxicity can be blocked by soluble antigens extracted from in vitro cultured cells. The existence of partial as well as total blocking effects in tests with extracts from various transformed and untransformed virus-producing cells makes it possible to distinguish up to four different kinds of antigens expressed on sarcoma virus transformed cells: a) a subgroup-specific determinant of the virus-envelope glycoprotein gp85 (s-gp85) is expressed at the surface of productively infected, tranformed as well as untransformed cells; b) a group-specific determinant of gp85 (g-gp85) that is only expressed on the surface of virus-transformed cells; c) embryonic antigens, also detectable on chemically transformed as well as on primary normal embryonic cells, and finally; d) a sarcoma virus transformation-specific antigen (TSSA) that is not a structural constituent of the virus.  相似文献   

6.
We have investigated the regulation of fibronectin and procollagen synthesis in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. We thus examined whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells. It was found that while the synthesis of both pro alpha 1 and pro alpha 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules.  相似文献   

7.
Virus-specific antigens were studied in hamster cells transformed by Rous sarcoma virus (RSV). Antigens were localized in the cytoplasm, as demonstrated by fluorescent antibody staining of fixed cells as well as by complement fixation (CF) following subcellular fractionation. Cytoplasmic extracts were analyzed by velocity and isopycnic centrifugation. CF antigens were found in a soluble form and in association with membranes and polyribosomes. Isolated plasma membranes had no CF antigen. Both soluble and particulate fractions with CF activity contained the same antigenic determinants by Ouchterlony analysis. These antigenic determinants were identical to those released by ether treatment of RSV.  相似文献   

8.
9.
Chickens bearing tumors which have been induced by avian retroviruses express cellmediated immune responsiveness against antigens which are associated with these neoplasms. We have employed a peripheral lymphocyte stimulation test to characterize antigens which are found in the supernatant fluids of avian retrovirus-infected chicken embryo fibroblast (CEF) cells and in the plasma of birds which have been inoculated with avian myeloblastosis virus (AMV). The results indicated that the antigenic activity being measured was virus group specific, cell transformation independent, and nonvirion in nature. Paradoxically, expression of such antigen(s) was restricted to cells which were actively synthesizing progeny avian retrovirus particles, and was absent in mammalian nonproducer cells which had been transformed by avian sarcoma viruses. Ability to respond immunologically to such antigen(s) was present in animals which had been inoculated with either leukosis or sarcoma viruses. Thymectomy, but not bursectomy, was stimulatory to tumor growth and abolished sensitized lymphocyte immune responsiveness in this system.  相似文献   

10.
Rat cerebral microvascular endothelial cells were infected with Schmidt-Ruppin Rous sarcoma virus-strain D (SR-RSV-D), an avian retrovirus. A single focus of transformed cells was isolated and the resultant cell line designated RCE-T1. The specificity for SR-RSV-D transformation was determined by virus rescue assay and demonstration of virus-specific antigens. RCE-T1 cells are virogenic when fused with chicken embryo fibroblasts (CEF) and do not produce infectious virus as demonstrated by the absence of detectable virus in culture fluid from these cells alone. Studies using an enzyme-linked immunosorbent assay (ELISA) for avian retrovirus-coded internal proteins show that RSV-transformed endothelial cells contain mainly p27 and react to some extent to p19 and p15 viral antigens. These data demonstrate conclusively that the transformation event was indeed due to SR-RSV-D. In addition, chromosome analysis confirmed these cells to be of rat origin. RSV-transformed endothelial cells express the typical array of transformation-related properties such as anchorage-independent cell growth in soft agar, decreased cell adhesiveness, ability to grow in low serum, and capability of producing tumors in newborn rats. Demonstration of differentiated endothelial characteristics included positive immunofluorescent staining for factor VIII antigen and angiotensin-converting enzyme and histochemical localization of gamma-glutamyl transpeptidase activity. This cell line should provide a useful model to study not only specialized biochemical and other functional characteristics of cerebrovascular endothelium but also the cellular mechanisms that involve the transition from normal to neoplastic expression.  相似文献   

11.
The middle T antigen of polyomavirus transformed primary chicken embryo fibroblasts when expressed from a replication-competent avian retrovirus. This in vitro-constructed retrovirus, SRMT1, is a variant of Rous sarcoma virus that encodes the middle T antigen in place of v-src. Inoculation of SRMT1 into 1-week-old chickens rapidly induced hemangiomas and hemangiosarcomas. As shown with mammalian cells infected with polyomavirus, polyomavirus middle T antigen appears to be associated with p60c-src in chicken cells infected with SRMT1. When lysates of SRMT1-infected cells immunoprecipitated with either a monoclonal antibody against p60src or anti-T serum were assayed in an in vitro kinase reaction, the middle T antigen was heavily phosphorylated. To see whether an excess of p60c-src could alter the extent of phosphorylation of the middle T protein or the process of cell transformation by middle T, cells were doubly infected with SRMT1 and NY501, a virus which overexpresses p60c-src. Doubly infected chicken embryo fibroblasts transformed with the same kinetics and were morphologically indistinguishable from chicken embryo fibroblasts infected with SRMT1 alone. Phosphorylation of the middle T antigen was elevated two- to fivefold relative to cells infected only with SRMT1.  相似文献   

12.
Rat cells transformed by Rous sarcoma virus and Fujinami sarcoma virus bound 5-10% of the amount of epidermal growth factor (EGF) bound by normal cells. Scatchard plot analysis indicated that the reduction in binding by transformed cells was due to a decreased number of receptors rather than to altered binding affinity. In experiments with temperature sensitive mutants of Rous sarcoma virus and Fujinami sarcoma virus significant loss of EGF binding occurred within one hour of shift from non-permissive to permissive temperature. Conditioned media from various normal and transformed cell lines were examined for the ability to inhibit EGF binding to normal cells or to cause "down regulation" of EGF receptors. No activity of either type was found. EGF-dependent phosphorylation in isolated membrane preparations was also examined. Membranes from normal cells displayed EGF-dependent phosphorylation of a Mr 180,000 protein presumed to be the EGF receptor. This activity was absent in membranes from transformed cells. The data suggest a close correlation between activation of avian sarcoma virus transforming gene products and modulation of the EGF growth regulatory system.  相似文献   

13.
Nonproducing Rous sarcoma cells of the chicken and their virus-producing as well as uninfected counterparts were studied with an electron microscope. The structural peculiarities of transformed cells included cytoplasmic annulate lamellae, aggregates of membrane-bound, glycogen-like granules, and empty, virus-like shells. Of 69 individual lines of nonproducing Rous sarcoma cells, 64 contained small numbers of viral particles. These particles were morphologically indistinguishable from mature avian tumor virus but lacked demonstrable infectivity. In sessile normal and leukosis virus-infected fibroblasts, microtubules and fibrils occurred in parallel arrays at the periphery of the cytoplasm. This cortical organization was absent from rounded Rous sarcoma cells. The characteristics of microtubular arrangement seemed to reflect differences in the locomotory activity of normal and transformed cells.  相似文献   

14.
Senda?-virus-induced fusion between heavily X-irradiated hamster cells, BHK21 or RS2-3 (BHK21 cells transformed by Rous Sarcoma Virus), and unirradiated mouse cells, A9 or c11D, give rise to hybrids. These hybrids possess mouse and hamster surface antigens. However, RS2-3 x mouse hybrids do not form heterokaryons with chick-embryo fibroblasts producing infectious Rous sarcoma virus.  相似文献   

15.
The recent isolation of conditional (temperature sensitive) and nonconditional transformation-defective mutants of avian sarcoma virus strains has facilitated the investigation of the effect of virus transformation on the cell's phenotype, e.g., with respect to morphology, growth pattern, or cell surface antigenicity. Special emphasis was laid on elucidating the correlation between transformed phenotype and tumor antigen expression. All of the tested nontransforming deletion mutants and the majority of the temperature-sensitive mutants were unable to induce tumor antigens in phenotypically untransformed cells. However, 3 temperature-sensitive mutants were found which were able to support the expression of tumor specific surface antigens even at restrictive temperature, when cells otherwise exhibited a normal phenotype. The theoretical and practical implications of this association between normal phenotype and tumor antigen expression are discussed.  相似文献   

16.
Rous sarcoma virus-transformed BHK cells (RSV/B4-BHK) adhere to a fibronectin-coated substratum primarily at specific dot-shaped sites. Such sites contain actin and vinculin and represent close contacts with the substratum as revealed by interference reflection microscopy. Only a few adhesion plaques and actin filament bundles can be detected in these cells as compared to untransformed parental fibroblasts. In thin sections examined with transmission electron microscopy (TEM) these adhesion sites correspond to short protrusions of the ventral cell surface that contact the substratum at their apical portion. These structures, which may represent cellular feet, are therefore called podosomes. By screening a number of different transformed fibroblasts plated on a fibronectin-coated substratum we find that podosomes are common to mammalian and avian cell lines transformed either by Rous sarcoma virus (RSV) or by Fujinami avian sarcoma virus (FSV), whose oncogenes encode specific tyrosine kinases. Using antibodies reacting with phosphotyrosine in immunofluorescence experiments, we show that phosphotyrosine-containing molecules are concentrated in podosomes. Podosomes are not detected in fibroblasts transformed by other retroviruses (Snyder-Theilen sarcoma virus, Abelson leukemia virus and Kirsten sarcoma virus) or by DNA tumor viruses (polyoma, SV40), indicating that podosome-mediated adhesion in transformed fibroblasts is related to the peculiar properties of some oncoproteins and possibly to their tropism for adhesion systems. Podosomes and adhesion plaques, although similar in cytoskeletal protein composition, have different mechanisms and kinetics of formation. Assembly of podosomes, in fact (i) does not require fetal calf serum (FCS) in the adhesion medium, that is necessary for the organization of adhesion plaques; (ii) does not require protein synthesis; and (iii) is insensitive to the ionophore monensin, that prevents adhesion plaque formation. Moreover, during attachment to fibronectin-coated dishes, podosomes appear in the initial phase (60 min) of attachment, while adhesion plaques require a minimum of 180 min. In conclusion podosomes of RSV- and FSV-transformed fibroblasts represent a phenotypic variant of adhesion structures.  相似文献   

17.
31P NMR spectra of normal rodent and avian fibroblasts were compared to those of the same cells transformed either by the Rous sarcoma virus (RSV) or by the Kirsten sarcoma virus (Ki-MSV). Under physiological conditions, the spectra of living or perchloric acid extracted chicken embryo fibroblasts, rat cell line FR3T3 and mouse cell line C127 did not differ from those of their counterparts transformed by RSV or Ki-MSV. However, in the case of FR3T3 cells, on shifting from 37 degrees C to 20 degrees C, and particularly if PBS replaced serum growth medium, a different, though transitory, response of the transformed cells was detected. They then showed, within few minutes, a more rapid ATP depletion with accumulation of fructose 1,6-diphosphate (FDP), as compared to normal control cells.  相似文献   

18.
19.
35S- and 32P-labeled proteins from control chick embryo fibroblasts and from fibroblasts transformed by UR2 sarcoma virus, or by a temperature-sensitive mutant (tsLA29) of Rous sarcoma virus, were separated by two-dimensional electrophoresis on giant gels to detect transformation-specific changes in protein synthesis and total phosphorylation. A nontransforming avian retrovirus, UR2-associated virus (UR2AV), was also studied. Virus-coded proteins appear in whole cell lysates of all infected cells. The structural proteins can be identified by comparison with proteins immunoprecipitated with antivirus serum. The transforming proteins pp60src and p68ros, present in cells transformed with Rous sarcoma virus and UR2, respectively, are phosphorylated in vivo. Eighteen increases and eight decreases in cellular phosphoproteins are associated with transformation, and revert toward normal levels when cells infected with tsLA29 are incubated at 42 degrees C. These changes are more extensive than previously reported, but none represent new phosphorylations, since all phosphoproteins seen in transformed cells also appear to be phosphorylated to a certain extent in control cells. Fifteen cellular proteins show increased relative rates of synthesis apparently related either to transformation or to growth at 42 degrees C. Four other proteins are increased exclusively in cells incubated at 42 degrees C, but not at 37 degrees C, whether transformed or not. Eleven additional increases in the synthesis of cellular proteins, many quite large, and one seemingly a de novo induction, appear to be specific for transformation. These changes occur in cells transformed by either UR2 or Rous sarcoma virus at 37 degrees C, do not occur with UR2AV infection, and tend to revert in cells infected with tsLA29 incubated at 42 degrees C. These 11 changes may represent increases in cellular gene expression that are related specifically to the maintenance of the transformed state.  相似文献   

20.
We have recently described a cell type-specific surface (SF) antigen that is deleted in chick fibroblasts transformed by Rous sarcoma virus. SF antigen is a major surface component and makes up about 0.5% of the total protein on normal cultured fibroblasts. The antigen is shed from normal cells and is present in circulation (serum, plasma), and in vivo, also, in tissue boundary membranes. The molecular equivalents of both cellular and serum SF antigen are distinct, large polypeptides, one of which (SF210, MW 210,000) is glycosylated and, on the cell surface, highly susceptible to proteases and accessible to surface iodination. Immunofluorescence and scanning electron microscopy have indicated that the antigen is located in fibrillar structures of the cell surface, membrane ridges, and processes. Human SF antigen is present in human fibroblasts and in human serum. We have recently shown that human SF antigen is identical to what has been known as the “cold-insoluble globulin” and that it shows affinity toward fibrin and fibrinogen. Our results also indicate that loss of the transformation-sensitive surface proteins is due not to loss of synthesis but to lack of insertion of the protein in the neoplastic cell surface. Both normal and transformed cells produce the SF antigen, but the latter do not retain it in the cell surface. The loss of SF antigen, a major cell surface component, from malignant cells creates an impressive difference between the surface properties of normal and malignant cells. The possible significance of SF antigen to the integrity of the normal membrane and its interaction to surrounding structures is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号