首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of halothane, ketamine and ethanol on β-adrenergic receptor adenylate cyclase system was studied in the brain of rats. An anesthetic concentration of halothane and ketamine added in vitro decreased the stimulatory effect of norepinephrine on cyclic AMP formation in slices from the cerebral cortex. On the other hand, ethanol increased the basal activity of cerebral adenylate cyclase without affecting on the norepinephrine-stimulated activity. The increase of the basal activity induced by ethanol was not antagonized by propranolol, a β-adrenergic antagonist. In the crude synaptosomal (P2) fraction, these drugs had no significant effect on the basal adenylate cyclase activity, binding of [3H]dihydroalprenolol to β-receptor, and binding of [3H]guanylylimido diphosphate ([3H]Gpp(NH)p) to guanyl nucleotide binding site. In contrast, the adenylate cyclase activity stimulated by Gpp(NH)p or NaF was significantly inhibited by an anesthetic concentration of these drugs. An anesthetic concentration of these drugs increased the membrane fluidity of P2 fraction monitored by the fluorescence polarization technique. The addition of linoleic acid (more than 500 μM) also induced not only the increase of fluidity, but also the decrease of Gpp(NH)p- or NaF-stimulated adenylate cyclase activity in the cerebral P2 fraction. The present results suggest that general anesthetics may interfere with the guanyl nucleotide binding regulatory protein-mediated activation of cerebral adenylate cyclase by disturbing the lipid region of synaptic membrane.  相似文献   

2.
Abstract: Stimulation of rat striatal adenylate cyclase by guanyl nucleotides was examined utilizing either MgATP or magnesium 5′-adenylylimidodiphos-phate (MgApp(NH) p) as substrate. GTP and 5′- guanylylimidodiphosphate (Gpp(NH) p) stimulate adenylate cyclase under conditions where the guanyl nucleotide is not degraded. The apparent stimulation of adenylate cyclase by GDP is due to an ATP-dependent transphosphorylase present in the tissue which converts GDP to GTP. We conclude that GTP is the physiological guanyl nucleotide responsible for stimulation of striatal adenylate cyclase. Dopamine lowers the Ka for Gpp(NH) p stimulation twofold, from 2.4 μM to 1.2 μM and increases maximal velocity 60%. The kinetics of Gpp(NH) p stimulation indicate no homotropic interactions between Gpp(NH) p sites and are consistent with one nonessential Gpp(NH) p activator site per catalytic site. Double reciprocal plots of the activation by free Mg2+ were concave downward, indicating either two sets of sites with different affinities or negative cooperativity (Hill coefficient = 0.3, K0.5= 23 mM). The data conform well to a model for two sets of independent sites and dopamine lowers the Ka for free Mg2+ at the high-affinity site threefold, from 0.21 mM to 0.07 mM. The antipsy-chotic drug fluphenazine blocks this shift in Ka due to dopamine. Dopamine does not appreciably affect the affinity of adenylate cyclase for the substrate, MgApp(NH) p. Therefore, dopamine stimulates striatal adenylate cyclase by increasing the affinity for free Mg2+ and guanyl nucleotide and by increasing maximal velocity.  相似文献   

3.
The relationship between calmodulin-dependent and β-adrenergic-sensitive adenylate cyclase activities was examined in membrane preparations from bovine cerebellum. Although stimulation by β-adrenergic agonists or calmodulin can occur independently, it is shown that their simultaneous presence has a strong synergistic effect on enzyme activity. Calmodulin did not influence the regulatory components of the neurotransmitter-dependent pathway as shown by the lack of effect on (1) receptor affinity, (2) GTP requirement for receptor-mediated activation, (3) rate of activation by guanyl 5′-yl imidodiphosphate [Gpp(NH)p]. Conversely, isoproterenol and guanine nucleotides did not modify to a significant extent the characteristics of enzyme stimulation by Ca2+ and calmodulin. Furthermore, calmodulin and Gpp(NH)p-dependent activities displayed different sensitivities to thermal inactivation.Our results indicate that β-adrenergic agonists and calmodulin interact with the same catalytic activity in cerebellar membranes, but presumably via two independent pathways.  相似文献   

4.
Influence of cholera toxin on the regulation of adenylate cyclase by GTP.   总被引:6,自引:0,他引:6  
In the presence of NAD+, cholera toxin activates adenylate cyclase in membranes of S49 mouse lymphoma cells. The following evidence supports the hypothesis that the toxin acts by inhibiting a specific GTPase associated with a guanyl nucleotide regulatory component of hormone-responsive cyclase: 1. GTP alone markedly stimulates cyclase activity in toxin-treated, but not in untreated membranes; 2. The poorly hydrolyzable GTP analog, guanosine 5′-(β,γ-imino) triphosphate (Gpp(NH)p), stimulates cyclase equally well in toxin-treated and untreated membranes; 3. Cyclase activation by isoproterenol plus GTP persists in toxin-treated membranes, but not in controls, after addition of propranolol; 4. GTP is a more potent competitive inhibitor of the irreversible activation of cyclase by Gpp(NH)p in toxin-treated than in untreated membranes.  相似文献   

5.
P M Lad  D M Reisinger  P A Smiley 《Biochemistry》1983,22(13):3278-3284
The turkey erythrocyte adenylate cyclase system binds tightly the inhibitory nucleotide GDP, and a pretreatment step with isoproterenol and GMP is required to restore activation. Under identical pretreatment conditions, the release of labeled nucleotide is complete within 1 min whereas the restoration of activation by Gpp(NH)p requires 15 min. A study of the ligand requirements of the slow step shows the following: (a) The role of GMP is that of an obligatory allosteric regulator. (b) Cholera toxin modification of the system abolishes the requirement for GMP with a considerable enhancement in the reaction rate. (c) GMP is without effect on the relaxation process with the activator Gpp(NH)p as the resident nucleotide. In sharp contrast, ethylenediamine-tetraacetic acid (without effect in a GDP-occupied complex) markedly potentiates alterations from the Gpp(NH)p-occupied state. (d) Formation of a GDP/guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) hybrid leads to the suppression of both F- and Gpp(NH)p activation. F- activation is restored by isoproterenol alone, while GMP is still required to restore Gpp(NH)p activation. The results suggest that covalent modification or nucleotide analogue occupancy of the regulatory complex can modify the allosteric role for GMP, with consequences for the rate of the slow step.  相似文献   

6.
The activation of uterine smooth muscle adenylate cyclase was studied by pretreating the particulate form of the enzyme with the GTP analog guanyl-5′-yl imidodiphosphate (Gpp(NH)p). Pretreatment with Gpp(NH)p left the enzyme in an irreversibly activated state which survived subsequent washing in guanyl nucleotide-free buffer. Activation under these conditions was multiphasic with rapid and slow components. At 23 °C slow activation proceeded at about 110th the rate of rapid activation. The onset of the slow phase took longer at lower temperatures. Routine adenylate cyclase assay conditions (conversion of [32P]ATP to cyclic [32P]AMP) carried out without pretreatment probably characterized the rapidly activated component. The simplest kinetic model suggests not only the generally accepted two-step association reaction, but also implies the existence of more than one enzyme form, each of which is characterized by a separate activation rate. The complex kinetics of activation might be explained by a heterogeneous mixture of unassociated and preassociated nucleotide binding and catalytic subunits.  相似文献   

7.
Summary The irreversible activation of adenylate cyclase by 5 guanylylimidodiphosphate, a phosphoramidate analog of 5GTP, has been examined in toad (Bufus marinus) plasma membranes using the technique of preincubating the membranes with the nucleotide under various controlled conditions followed by washing and subsequent assay of enzyme activity. Activation of adenylate cyclase by Gpp(NH)p, but not GTP, is essentially permanent and persists following extensive washing, prolonged incubation at 30°C in the absence of the nucleotide, and after dissolution of the membranes with Lubrol PX. (–)-Isoproterenol increases the activation observed with maximal concentrations of Gpp(NH)p from eight- to 10-fold (in the absence of hormone) to 50- to 100-fold; final activities as high as 10–15 nmoles of cyclic AMP per min per mg protein are achieved. The activated state obtained with isoproterenol and Gpp(NH)p is also permanent and is not inhibited by propranolol. The synergism between Gpp(NH)p and hormone requires the simultaneous presence of these compounds, and the time-dependent enhancement of activation with (–)-isoproterenol may be interrupted by addition of propranolol.The stimulation is slow, and may proceed for as long as 45 min at 30°C in the presence of maximal concentrations of Gpp(NH)p and (–)-isoproterenol. Very little activation occurs at 0°C. The time course of activation at 30°C exhibits an accelerating phase lasting from 5 to 30 min when Gpp(NH)p is added directly during assay of cyclase activity or when the membranes are preincubated for various times and washed prior to assay for a fixed time. The lag period occurs in the presence and absence of (–)-isoproterenol, although the rate of increase in velocity is greater with hormone. The length of the accelerating phase decreases with increasing concentrations of Gpp(NH)p, although it is still evident with maximal levels of Gpp(NH)p and hormone. However, prewarming the membranes at 30°C for 10 min in the absence of Gpp(NH)p or (–)-isoproterenol results in an immediate onset of linear activation at a rate which is achieved in untreated membranes only after about 10 min. The events occurring during prewarming at 30°C are readily reversible since chilling the warmed membranes to 0°C results in a time course of activation identical to that of membranes maintained at 0°C until addition of Gpp(NH)p.Activation is proportional to the concentration of Gpp(NH)p within the range of 10–8 to 10–4 mm. The apparent affinity for Gpp(NH)p increases with increasing time of incubation. The primary effect of increasing the concentration of Gpp(NH)p is to decrease the time required to obtain a maximal rate of activation.The possible relevance of these findings to the mechanism of action of Gpp(NH)p, adenylate cyclase and hormones is discussed within the context of current views of biological membranes which recognize the lateral mobility of membrane molecules.  相似文献   

8.
Partially purified rat liver plasma membranes were enriched to yield a more glucagon-sensitive membrane fraction which was solubilized with Lubrol-PX. The supernate obtained after centrifugation at 165,000g was subjected to O-diethylaminoethyl anion exchange chromatography. An adenylate cyclase fraction was eluted and purified further by chromatography on agarose-hexane-GTP. The enzyme adsorbed to the affinity resin and was eluted with 0.5 m Tris-HCl. The protein isolated by chromatography on the affinity resin was homogenous by conventional acrylamide gel electrophoresis; one band was observed in sodium dodecyl sulfate. The purified enzyme was free of nucleotide phosphohydrolases found in the parent solubilized membrane preparation. The anion exchange product was not sensitive to glucagon; Lubrol-PX and 5′-guanylylimidodiphosphate [Gpp(NH)p] decreased the activity of this fraction. In the presence of detergent or guanyl nucleotide, glucagon, at 10?6m, increased enzyme activity by 30 and 21%, respectively, to a statistically significant degree, but not above basal levels. Adenylate cyclase was also purified by subjecting the 165,000g supernate directly to agarose-hexane-GTP; agarose-hexane-ATP or agarose-hexane was not effective. The affinity-derived material was associated with 85 nmol of Lubrol-PX/mg of protein. When calculated on the basis of a molecular weight of 150,000 for detergent-free protein after gel filtration on Bio-Gel A-0.5 m, there was 13 mol of detergent/mol of the enzyme obtained by chromatography on the affinity resin. The direct affinity product was insensitive to glucagon and Gpp(NH)p; enzyme activity varied as a function of Lubrol concentration.  相似文献   

9.
Adenylate cyclase (ATP pyrophosphate-lyase, EC 4.6.1.1) in plasma membranes from human thyroid was highly responsive to thyrotropin. Pretreatment of thyroid plasma membranes with 5′-guanylylimidodiphosphate (Gpp(NH)p) in the presence of Mg2+ led to a temperature-dependent activation, which was seen neither in the absence of Mg2+ nor at 4 °C. By contrast, thyrotropin bound to its receptors regardless of the temperature and produced its maximal effect after 2 min of preincubation in the absence or presence of Mg2+. Furthermore, activation was seen after treatment with thyrotropin and Gpp(NH)p even carried out in the absence of Mg2+ or at 4 °C. However, the full activation by Gpp(NH)p required Mg2+, hormone, and elevated temperature. These observations suggest that there appears to be two types of nucleotide interaction responsible for the Gpp(NH)p activation in human thyroid membrane; one type seen in the absence of hormone may represent the system uncoupled from hormone receptor, while the fully coupled hormone-sensitive adenylate cyclase accounts for the second type of interaction which requires the presence of hormone.  相似文献   

10.
The diterpene forskolin has been reported to activate adenylate cyclase in a manner consistent with an interaction at the catalytic unit. However, some of its actions are more consistent with an interaction at the coupling unit that links the hormone receptor to the adenylate cyclase activity. This report adds support to the latter possibility. Under conditions that lead to stimulation of adenylate cyclase in turkey erythrocyte membranes by GTP, forskolin also becomes more active. Additional evidence to support an influence of forskolin upon adenylate cyclase via the GTP-coupling protein N includes the following: (i) forskolin, at submaximal concentrations, leads to enhanced sensitivity and responsiveness of isoproterenol-dependent adenylate cyclase activity in turkey erythrocyte membranes; (ii) under specified conditions, the nucleotide GDP, an inhibitor of the stimulating nucleotide GTP and its analog, guanyl imidodiphosphate (Gpp(NH)p), also markedly inhibits the action of forskolin; (iii) both Gpp(NH)p and forskolin are associated with a decrease in agonist affinity for the beta-adrenergic receptor. However, actions of forskolin in the turkey erythrocyte are not identical to those of GTP: (i) forskolin is never as potent as Gpp(NH)p in activating adenylate cyclase; (ii) the magnitude of synergism between isoproterenol and forskolin is not equal to that observed with isoproterenol and Gpp(NH)p; (iii) at high concentrations, forskolin inhibits antagonist binding to the beta-receptor. Forskolin appears to have several sites of action in the turkey erythrocyte membrane, including an influence upon the adenylate cyclase regulatory protein N.  相似文献   

11.
Adenylate cyclase from rabbit ventricle was solubilized in 30 to 50% yield by the nonionic detergent Lubrol PX. The detergent, when present in the assay at concentrations above 0.05%, rapidly inactivated the enzyme in assays conducted above 26 °C; assays were valid only when conducted below this temperature. The solubilized enzyme was eluted from diethylaminoethyl (DEAE)-Bio-Gel A (DEAE-agarose) with 100 mm NaCl in a yield of 25% and was free of detergent. Several properties of the solubilized detergent-free enzyme were similar to properties of the native membrane-bound species. The Km for substrate was 0.1 mm, the Ka for Mg2+ was 2.5 mm, and ATP in excess of Mg2+ was inhibitory. The enzyme was activated by F? and guanyl-5′-yl imidodiphosphate [Gpp(NH)p] in a time- and temperature-dependent manner, and activation by the latter was persistent. Activation by F? and Gpp(NH)p reduced the Ka for Mg2+. Activation by Gpp(NH)p was increased by Mg2+; the apparent Ka for activation was 0.1 μm. Multiple binding sites for Gpp(NH)p were present: one class with a Kd value of 0.11 μm was probably associated with activation of the enzyme. The soluble enzyme was insensitive to catecholamines, in both the presence and the absence of Gpp(NH)p. Sensitivity to catecholamines was not restored by the addition of phospholipids, particularly phosphatidyl inositol, in either the presence or the absence of Gpp(NH)p, and this phospholipid did not increase the sensitivity of the membrane-bound enzyme to epinephrine. Catecholamine binding sites were present, and their association with adenylate cyclase was seemingly not affected by phospholipids.  相似文献   

12.
Abstract

Many radiolabelled receptors coupled to intracellular adenylate cyclase activity have been found to be modulated by physiological modulators such as GTP (guanosine triphosphate) and Gpp(NH)p (guanosine-imido-diphosphate). In particular, the apparent affinity of agonists competing for the binding of 3H-antagonist-labelled receptors is reduced in the presence of GTP and Gpp(NH)p. We report herein the agonist-specific effects of GTP and Gpp(NH)p on rat brain cortical S2 serotonin receptors. The agonists serotonin, 5-methoxytryptamine, bufotenine, and tryptamine display threefold lower affinities for S2 serotonin receptors in the presence of 10-4M GTP or Gpp(NH)p than in the absence of the nucleotides. The antagonists spiperone, cinanserin, cyproheptadine and methysergide are unaffected by the guanine nucleotides. The Hill coefficients of the agonists increase from between 0.70–0.80 to 0.90–1.00 due to guanine nucleotides. ATP, ADP, and GDP have little or no effect. This pattern of guanine nucleotide effects has been found with receptors which are modulated by a guanine nucleotide regulatory protein and may indicate that the S2 serotonin receptor may be coupled to intracellular adenylate cyclase activity.  相似文献   

13.
Abstract: Adenylate cyclase was solubilized from washed paniculate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60°C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

14.
The effects of calcium ion on the adenylate cyclase system was studied in isolated, renal basal-lateral plasma membranes of the rat. Bovine parathyroid hormone (bPTH) and a guanyl triphosphate analogue, Gpp(NH)p were used to stimulate cyclase activity. Under conditions of maximal stimulation, calcium ions inhibited cyclic adenosine monophosphate (cAMP) formation, the formation rate falling exponentially with the calcium concentration. Fifty percent inhibition of either bPTH- or Gpp(NH)p-stimulated activity was given by approximately 50 μM Ca++. Also the Hill coefficient for the inhibition was close to unity in both cases. The concentration of bPTH giving half-maximal stimulation of cAMP formation (1.8 × 10?8 M) was unchanged by the presence of calcium. These data suggest that calcium acts at some point other than the initial hormone-receptor interaction, presumably decreasing the catalytic efficiency of the enzymic moiety of the membrane complex.  相似文献   

15.
The mechanism of receptor-induced activation of adenylate cyclase has been proposed to involve an enhanced exchange of GDP for GTP. The kinetics of this process have not been investigated so far in the brain due to a spontaneous activation of the enzyme by guanyl nucleotides, which precludes the ability to follow receptor-dependent events. We show that it is possible to investigate the mechanism of receptor action in such systems by using a combination of guanosine 5'-(beta-gamma-imino)triphosphate (Gpp(NH)p) and guanosine 5'-(2-O-thio)diphosphate (GDP beta S). In pineal membranes, beta-adrenergic agonists increase the rate of adenylate cyclase activation by 10 or 100 microM Gpp(NH)p about 40-fold (0.023-0.9 min-1 kact) and decrease the inhibitory potency of GDP beta S nearly 1000-fold. As a result, 100 microM GDP beta S which blocks 90% of the activation by 10 microM Gpp(NH)p has no inhibitory effect in the presence of 10 microM Gpp(NH)p and 10 microM noradrenaline or isoproterenol. In caudate nucleus, dopamine does not appear to increase the rate of activation of adenylate cyclase by 10 microM Gpp(NH)p. Nevertheless, 100 microM GDP beta S blocks 90% of the activation by 10 microM Gpp(NH)p but has no inhibitory effects in the presence of dopamine. Thus, one can demonstrate that even weakly activating receptors have the capacity to facilitate a functional exchange of GDP beta S for Gpp(NH)p and measure the efficacy of the interaction between the receptor and the functionally linked guanyl nucleotide subunit.  相似文献   

16.
Adenylate cyclase was solubilized from washed particulate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60 degrees C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

17.
Alterations in receptor-independent activation of adenylate cyclase during proliferation and differentiation of L6E9 myoblasts were studied using Mn2+, forskolin, and Gpp(NH)p. Analyses were performed 3, 6, and 10 days following subculture, corresponding to onset of proliferation, end of proliferation with start of differentiation, and completion of differentiation, respectively. The apparent activation constant for Mn2+ decreases with the age of the culture; the apparent activation constant for Mg2+ does not. Bimodal activation by Mn2+, i.e., at concentrations greater than 10 mM, results in total adenylate cyclase activity less than the Vmax and occurs exclusively in differentiated cultures. Independent of the presence of Mg2+, forskolin activation occurs with low-and high-affinity constants in differentiated cultures and with a low affinity constant in youngest cultures; intermediate cultures (day 6) demonstrate low- and high-affinity activation only in the presence of high Mg2+. In contrast, the Vmax for forskolin increases with increasing Mg2+ in all culture ages. Although Gpp(NH)p-dependent adenylate cyclase activation occurs with an apparent activation constant independent of culture age and Mg2+, low Mg2+ fosters bimodal activation by Gpp(NH)p, i.e., above 100 microM nucleotide, total adenylate cyclase activity is less than the Vmax. The loss of stimulatory capacity by high Gpp(NH)p is greatest in differentiated cultures. Additional experiments are presented to substantiate that bimodal activation by Gpp(NH)p is specific. Cholera- and pertussis toxin-dependent ADP ribosylation patterns demonstrate a marked decrease in both Ns and Ni in differentiated cultures. The data suggest that alterations in postreceptor activation of adenylate cyclase during the course of differentiation and proliferation are mediated by guanine nucleotide binding proteins as well as by allosteric cation regulatory units.  相似文献   

18.
Progesterone treatment induces the meiotic maturation of Xenopus laevis oocytes. Previous evidence indicates that this hormonal effect may be due to inhibition of oocyte adenylate cyclase. The present work studies several aspects of the mechanism of adenylate cyclase inhibition by this hormone. Forskolin greatly stimulates oocyte adenylate cyclase in the absence of guanine nucleotides and this activity is not sensitive to progesterone inhibition. In addition the forskolin-activated enzyme is not inhibited by a wide range of guanine nucleotide, in the presence or absence of hormone. The time course of cAMP synthesis catalyzed by oocyte adenylate cyclase in the presence of guanyl-5′l-imidodiphosphate (Gpp(NH)p) shows an initial lag period that does not depend on the concentration of Gpp(NH)p. Progesterone causes a very significant increase in the hysteresis of the reaction, at least doubling the half-time of enzyme activation. The hormonal effect on the lag cannot be reversed by saturating concentrations of Gpp(NH)p. Progesterone also decreases the steady-state rates of the reaction. This effect, however, depends on the concentration of Gpp(NH)p. High concentrations of Gpp(NH)p almost completely reverse the inhibition of the steady-state rates. Progesterone does not inhibit if it is added to the reaction after the initial lag period. Guanosine-5′-O-(2-thiodiphosphate) (GDP-β-S) is an efficient competitive inhibitor of Gpp(NH)p activation of adenylate cyclase. Progesterone inhibition is observed at all concentrations of GDP-β-S and is potentiated at high ratios of GDP-β-S to Gpp(NH)p. These data indicate that progesterone inhibits by interfering with the activation of the Ns subunit of the enzyme by guanine nucleotides, rather than through a mechanism involving a separate Ni subunit.  相似文献   

19.
Summary Some novel observations dealing with antagonist binding to cardiac particulate muscarinic receptors are described. Gpp(NH)p increased (2–3 fold) the specific binding of [3H]-QNB or [3H]-NMS, both potent muscarinic antagonists, to washed particles (WP), but not microsomes (MIC), when the binding was conducted at 30°C. Magnesium, on the other hand, increased (2–3 fold) the binding of these antagonists to MIC, but not to WP, under the same condition. The treatment of subcellular fractions with 0.2 mM N-ethylmaleimide (NEM), a sulfhydryl reagent, failed to significantly modify the respective stimulatory actions of either Gpp(NH)p on WP binding or of magnesium on MIC binding of these antagonists; treatment with dithiothreitol (1 mM) was also ineffective in this regard. Gpp(NH)p decreased Kd (WP) while magnesium increased Kd (MIC) for [3H]-QNB. Repeated freezing/thawing of isolated subcellular fractions abolished the stimulatory effect of magnesium on onist binding to MIC but not of Gpp(NH)p on WP antagonist binding; the freeze/thaw procedure per se increased MIC binding but not WP binding of these antagonists. When the binding was conducted at 4°C (24 hr), the stimulatory effect of Gpp(NH)p on [3H]-QNB binding was enhanced (6-fold) in the case of WP and was detectable (80%) in the case of MIC. Under this condition, the stimulatory effect of magnesium on [3H]-QNB binding was also enhanced (5-fold) in the case of MIC and became evident (200%) in the case of WP. The results of this work support the following views: (a) antagonist-occupied cardiac muscarinic receptors are capable of interaction with guanine nucleotide binding proteins (G protein like G1,Go) and such interaction influences antagonist binding properties (e.g. increased affinity) of the cardiac membrane-associated muscarinic receptors (b) magnesium influences (decreased affinity) antagonist binding properties by interacting with multiple sites of which some are likely associated with components other than G proteins of the particulate fractions (c) a pool of NEM-sensitive sulfhydryls involved in the regulation of Gpp(NH)p-sensitive agonist binding to cardiac muscarinic receptors is not involved in the regulation by either Gpp(NH)p or magnesium of antagonist binding in these subcellular fractions and (d) membrane fluidity and microenvironment surrounding the receptor and G proteins contribute to the actions of Gpp(NH)p and magnesium on antagonist binding.  相似文献   

20.
In the presence of guanyl nucleotides and rhodopsin-containing retinal rod outer segment membranes, transducin stimulates the light-sensitive cyclic nucleotide phosphodiesterase 5.5-7 times. The activation constant (Ka) for GTP and Gpp(NH)p is 0.25 microM, that for GDP and GDP beta S is 14 and 110 microM, respectively. GDP purified from other nucleotide contaminations at concentrations up to 1 mM does not stimulate phosphodiesterase but binds to transducin and inhibits the Gpp(NH)p-dependent activation of phosphodiesterase. The mode of transducin interaction with bleached rhodopsin also depends on the nature of the bound guanyl nucleotide: in the presence of GDP rhodopsin-containing membranes bind 70-100% of transducin, whereas in the presence of Gpp(NH)p the membranes bind only 13% of the protein. The experimental results suggest that GDP and GTP convert transducin into two different functional states, i.e., the transducin X GTP complex binds to phosphodiesterase causing its stimulation, while the transducin X GDP complex is predominantly bound to rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号