首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of Ca++ uptake have been evaluated in 3T3 and SV40-3T3 mouse cells. The data reveal at least two exchangeable cellular compartments in the 3T3 and SV40-3T3 cell over a 50-min exposure to 45Ca++. A rapidly exchanging compartment may represent surface-membrane-localized Ca++ whereas a more slowly exchanging compartment is presumably intracellular. The transition of the 3T3 cell from exponential growth (at 3 day's incubation) to quiescence (at 7 days) is characterized by a 7.5-fold increase in the size of the fast component. Quiescence of the 3T3 cell is also characterized by a 3.2-fold increase in the unidirectional Ca++ influx into the slowly exchanging compartment and a 3.6-fold increase in its size. The increase in size of the slow compartment at quiescence may result from a redistribution of intracellular Ca++ to a more readily exchangeable compartment, possibly reflecting a release of previously bound Ca++. In contrast, no significant change in any of these parameters is observed in the proliferatively active SV40-3T3 cells after corresponding period of incubation, even though these cells attained higher growth densities and underwent postconfluence.  相似文献   

2.
Decreased serum concentrations that substantially alter the growth of normal 3T3 cells alter neither the active and non-active components of unidirectional 86Rb+ influx nor the intracellular K+ content when compared with cells in exponential growth. Thus the changes in K+ transport (measured with 86Rb+ as an analogue for K+ movements) that occur on density-dependent growth inhibition of the mouse 3T3 cell are not mimicked by serum deprivation of the cells before density inhibition.  相似文献   

3.
The passive K+ permeability of 3T3 and SV40-3T3 cells was evaluated from experiments on passive K+ efflux and electrical transmembrane potential measurements at different cell growth densities, external calcium concentrations and temperatures. Passive K+ permeability was shown to decrease markedly with increasing cell growth density, to increase with the lowering of external calcium concentration, and at low cell densities to be higher at low temperature (25 °C) than at physiological temperature (37 °C). These and further results taken from the literature are fully consistent with the notion of regulation of proliferation being effected by control of intracellular K+ concentrations. The phenomenon of high temperature inactivation of passive K+ permeabilities observed at low cell densities is discussed in analogy to recent results on model systems from phospholipid/cholesterol doted with channel-forming antibiotics.  相似文献   

4.
Direct Isolation and Characterization of “Flat” SV40-transformed Cells   总被引:7,自引:0,他引:7  
UNDER standard culture conditions cells of the permanent mouse embryo line BALB/c-3T3 cease to divide when cell to cell contact is made and thus are characterized as sensitive to density dependent inhibition of growth. A loss of this aspect of growth control is commonly used as a selective means for recovering SV40-transformants because such transformed cells continue to divide in conditions in which nontransformed cells remain confined to the monolayer1. SV40-transformants selected by their ability to overgrow the monolayer commonly attain population densities ten to fifteen times greater than nontransformed cells, although viral transformants of low saturation density termed “flat revertants” may be obtained from transformed clonal lines by negative selection with 5-fluoro-2-deoxyuridine2, or by passage on cell layers fixed with glutar aldehyde3.  相似文献   

5.
The effect of serum stimulation on unidirectional and net K flux and their relationship to the initiation of DNA synthesis has been investigated in mouse 3T3 fibroblasts. Stimulation of quiescent 3T3 cells with 20% serum results in the initiation of S phase approximately ten hours after serum addition. During transition from G1 to S phase distinct changes in K transport and cellular K content occur. Total unidirectional K influx undergoes an immediate 2-fold increase upon serum addition, an observation in qualitative agreement with previous results (Rozengurt and Heppel, 1975). This total increase in unidirectional K influx represents a proportional increase in the active, ouabain sensitive component and the K-K exchange component. The initial increase in total flux is followed by a gradual decline over a 16-hour period to levels approaching those of quiescent cells. Following the initial increase in unidirectional K influx is an approximately 75% increase in cell K on a per milligram protein basis or a 40% increase on a per volume basis. This increase peaks at four to five hours and then declines to initial levels at 10 to 14 hours. Populations of quiescent cells given 20% serum plus 0.5 mM ouabain simultaneously are totally blocked from entering S phase, as determined by the appearance of 3H-thymidine labeled nuclei. However, if the ouabain is removed after six hours these cells then undergo the same changes in unidirectional K influx and content as serum stimulated cells with entrance into S phase retarded by five to six hours. If ouabain is added to serum stimulated cells at six hours, after the increase in K transport and K content have occurred, entrance into S phase is not entirely blocked. In cells stimulated with serum and 0.5 mM dBcAMP plus 1 mM theophylline simultaneously, entrance into S phase is greatly reduced as compared to serum stimulation only. However, the early and late changes in K flux and K content are not substantially altered. This indicates that the K transport events associated with G1 and early S phase are not directly regulated by changes in cAMP levels which follow serum stimulation.  相似文献   

6.
Phosphate uptake by monolayers of 3T3 cell decreases when the cultures enter the stationary phase, even when incubated in fresh medium containing 10% serum. However, SV 3T3 cultures retain a high rate of phosphate uptake when the cells reach saturation densities.We have observed that 3T3 cells grown to stationary phase in monolayers and then trypsinized and incubated in suspension, display an increase in phosphate uptake when the cell concentration is decreased from 106 cells/ml to 105 cells/ml. Where the cell concentration is further reduced from 105 cells/ml to 2.5 × 104 cells/ml there is no further increase in the rate of phosphate uptake. We observed, on the contrary, a small decrease.The “concentration effect” (the decrease of phosphate uptake when the cell concentration increases from 105 to 106 cells/ml) is larger when cells originate from a culture in stationary phase than when they originate from a culture in log phase.The “concentration effect” may be observed 10 min after cell incubation but is larger after a lag time of 40 min incubation.Differences in the “concentration effect” may be noted between 3T3 and SV 3T3 cells. In SV 3T3 cells no significant variations of phosphate uptake were observed when the cell concentration was changed. Thus, differences between phosphate uptake in 3T3 and SV 3T3 cells are large when cells are incubated at high concentrations or at high densities and small when they are incubated at low concentrations or at low densities.The “concentration effect” in 3T3 cells supports the assumption that interactions between cells cause the decrease of phosphate metabolism in dense culture. Diffusion of an inhibitor into the medium remains the more plausible explanation of the data.  相似文献   

7.
The effect of ouabain on K+ transport was examined in 3T3 and virally transformed 3T3 cells. A 10 min exposure to ouabain (10−3 M) produced approximately 40% inhibition of the unidirectional K+ influx in all cell lines. In 3T3 cells the response was not significantly altered by up to 70 min exposure to the drug. In contrast, the continued exposure of transformed cells to ouabain produced a time-dependent increase in the K+ influx. This increased influx was shown to be accompanied by an increase in the K+ efflux. The results suggest that, in transformed cells, ouabain produces both an inhibition of Na+-K+ exchange and a stimulation of K+-K+ exchange. The latter was shown to be more readily reversible than the former.  相似文献   

8.
In a previous study, evidence was presented for an external Na+-dependent, ouabain-insensitive component of Na+ efflux and an external K+-dependent component of K+ efflux in the Ehrlich ascites tumor cell. Evidence is now presented that these components are inhibited by the diuretic furosemide and that under conditions of normal extracellular Na+ and K+ they represent Na+-for-Na+ and K-+for-K+ exchange mechanisms. Using 86Rb to monitor K+ movements, furosemide is shown to inhibit an ouabain-insensitive component of Rb+ influx and a component of Rb+ efflux, both representing approx. 30% of the total fux. Inhibition of Rb+ efflux is greatly reduced by removal of extracellular K+. Furosemide does not alter steady-state levels of intracellular K+ and it does not prevent cells depleted of K+ by incubation in the cold from regaining K+ upon warming. Using 22Na to monitor Na+ movements, furosemide is shown to inhibit an ouabain-insensitive component of unidirectional Na+ efflux which represents approx. 22% of total Na+ efflux. Furosemide does not alter steady-state levels of intracellular Na+ and does not prevent removal of intracellular Na+ upon warming from cells loaded with Na+ by preincubation in the cold. The ability of furosemide to affect unidirectional Na+ and K+ fluxes but not net fluxes is consistent with the conclusion that these components of cation movement across the cell membrane represent one-for-one exchange mechanisms. Data are also presented which demonstrate that the uptake of α-aminoisobutyrate is not affected by furosemide. This indicates that these components of cation flux are not directly involved in the Na+-dependent amino acid transport system A.  相似文献   

9.
Unindirectional potassium influx and the fraction of this influx sensitive to ouabain, an inhibitor of the (Na + K) activated ATPase, have been evaluated as a function of subcultivation of the 3T3 and SV40 transformed 3T3 cell. Total and ouabain-sensitive K influx change little over approximately 50 passages of the transformed 3T3 cell. In contrast, these components of K influx increase nearly 5-fold over a similar number of passages of the 3T3 cell. During early passages total and ouabain-sensitive K influx of the 3T3 cell are below that of the SV40 3T3 cell on a per cell volume basis. At later passages the magnitude of these components of K transport exceed those found in the SV40 3T3 cell. Previous studies have reported the ouabain-sensitive uptake of K and the levels of (Na + K) activated ATPase as being higher, lower or equivalent in the 3T3 versus transformed 3T3 cell. The present data suggest these differences may results from the degree to which the cells were passaged at the time of the experiments. Evaluation of previous studies substantiates this conclusion.  相似文献   

10.
The transport of selected neutral and cationic amino acids has been studied in Balb/c 3T3, SV3T3, and SV3T3 revertant cell lines. After properly timed preincubations to control the size of internal amino acid pools, the activity of systems A, ASC, L, and Ly+ has been discriminated by measurements of amino acid uptake (initial entry rate) in the presence and absence of sodium and of transportspecific model substrates. L-Proline, 2-aminoisobutyric acid, and glycine were primarily taken up by system A; L-alanine and L-serine by system ASC; L-phenylalanine by system L; and L-lysine by system Ly+ in SV3T3 cells. L-Proline and L-serine were also preferential substrates of systems A and ASC, respectively, in 3T3 and SV3T3 revertant cells. Transport activity of the Na+-dependent systems A and ASC decreased markedly with the increase of cell density, whereas the activity of the Na+-independent systems L and Ly+remained substantially unchanged. The density-dependent change in activity of system A occurred through a mechanism affecting transport maximum (Vmax) rather than substrate concentration for half-maximal velocity (Km). Transport activity of systems A and ASC was severalfold higher in transformed SV3T3 cells than in 3T3 parental cells at all the culture densities that could be compared. In SV3T3 revertant cells, transport activity by these systems remained substantially similar to that observed in transformed SV3T3 cells. The results presented here add cell density as a regulatory factor of the activity of systems A and ASC, and show that this control mechanism of amino acid transport is maintained in SV40 virus-transformed 3T3 cells that have lost density-dependent inhibition of growth, as well as in SV3T3 revertant cells that have resumed it.  相似文献   

11.
In a previous study, evidence was presented for an external Na+-dependent, ouabain-insensitive component of Na+ efflux and an external K+-dependent component of K+ efflux in the Ehrlich ascites tumor cell. Evidence is now presented that these components are inhibited by the diuretic furosemide and that under conditions of normal extracellular Na+ and K+ they represent Na+-for-Na+ and K-+for-K+ exchange mechanisms. Using 86Rb to monitor K+ movements, furosemide is shown to inhibit an ouabain-insensitive component of Rb+ influx and a component of Rb+ efflux, both representing approx. 30 percent of the total flux. Inhibition of Rb+ efflux is greatly reduced by removal of extracellular K+. Furosemide does not alter steady-state levels of intracellular K+ and it does not prevent cells depleted of K+ by incubation in the cold from regaining K+ upon warming. Using 22Na to monitor Na+ movements, furosemide is shown to inhibit an ouabain-insensitive component of unidirectional Na+ efflux which represents approx. 22 percent of total Na+ efflux. Furosemide does not alter steady-state levels of intracellular Na+ and does not prevent removal of intracellular Na+ upon warming from cells loaded with Na+ by preincubation in the cold. The ability of furosemide to affect unidirectional Na+ and K+ fluxes but not net fluxes is consistent with the conclusion that these components of cation movement across the cell membrane represent one-for-one exchange mechanisms. Data are also presented which demonstrate that the uptake of alpha-aminoisobutyrate is not affected by furosemide. This indicates that these components of cation flux are not directly involved in the Na+-dependent amino acid transport system A.  相似文献   

12.
The levels of NAD (NAD+ + NADH) and NADP (NADP+ + NADPH) and their redox states were measured as a function of growth in 3T3 mouse fibroblasts which exhibit density-dependent inhibition of growth and SV40 (simian virus #40)-transformed 3T3 cells (SVT2) which have lost this property. The levels were related to cell numbers, protein content, and rates of DNA synthesis. At corresponding cell densities, 3T3 cells contain approximately twice as much total protein as SVT2 cells. The levels of NAD relative to total cellular protein are density dependent in both 3T3 and SVT2, increasing with increasing cell density. Over a 30-fold range of cell densities, the NAD levels in 3T3 increase 2.4-fold, while the levels in SVT2 increase 1.6-fold. The levels of NAD are very similar in dividing 3T3 and SVT2 cells at corresponding cell densities; however, a marked increase in the levels of NAD is observed in 3T3 cells, but not in SVT2 cells, at cell densities just prior to where 3T3 cells enter density-dependent inhibition of growth. This increase in NAD levels is correlated with the cessation of DNA synthesis. The NAD pools are 15–25% NADH for 3T3 and 5–15% NADH for SVT2. NADP levels relative to protein in 3T3 and SVT2 are less density dependent, with overall increases of 1.3- and 1.2-fold, respectively, observed over the range of cell densities examined. NADP levels relative to protein are nearly twice as high in SVT2 cells as in 3T3 cells of corresponding cell densities. The NADP pools are approximately 70–80% NADPH in both cell types.  相似文献   

13.
Treatment of the SV40 transformed 3T3 cell line SV101 with colchicine permits the isolation of polyploid revertant sublines Which have lower saturation densities than SV101. These low saturation density lines have also reverted to a high serum requirement for growth, and are unable to form colonies in methocel. Normal SV40 has been recovered from these revertants. 3T3 cells are more resistant to colchicine than SV3T3 cells at all cell densities. Colchicine revertants do not display a 3T3-like resistance to colchicine at low density, but do survive colchicine at confluent cell densities, presumably due to their increased contact inhibition.  相似文献   

14.
Quiescent SV40 virus transformed 3T3 cells in culture   总被引:6,自引:0,他引:6  
Serum counteracts low nutrient concentrations in the culture medium in SV40 virus transformed 3T3 (SV3T3) cells. The transport of [3H]-leucine into TCA soluble material in SV3T3 cells is stimulated by serum and inhibited by But2-cAMP. When SV3T3 cells are cultured in low leucine concentrations (? 8 × 10?6 M), the cell's morphology is similar to the one of cells incubated in complete medium in the presence of But2-cAMP and cells become quiescent. Cells become arrested throughout the cell cycle. The results suggest that the mechanism by which But2-cAMP inhibits growth of SV3T3 cells is by inhibiting the transport of leucine in SV3T3 cells.  相似文献   

15.
Mouse 3T3 fibroblasts have a loop diuretic sensitive Na+ transport system, responsible for more than 50% of the total Na+ influx. This transport system is dependent on the simultaneous presence of all three ions; Na+, K+, (Rb+) and Cl- in the extracellular medium. The same requirement for these three ions was also found for the loop diuretic-sensitive K+ efflux. In addition, the sensitivities of Na+ influx and Rb+ efflux for the two loop diuretics, furosemide and bumetanide were found to be similar. The similar ionic requirement and sensitivity towards loop diuretics of the two fluxes, support the hypothesis, that this loop diuretic-sensitive Na+ influx in mouse 3T3 cells, is accompanied by the net loop diuretic-sensitive K+ efflux.  相似文献   

16.
A dramatic decrease in cellular motility (measured by means of the augmented diffusion constant, D) was observed with increasing cell area densities of 3T3 fibroblasts. This phenomenon was named density inhibition of motility, and a quantitative measure of this effect, the coefficient of density inhibition of motility, was proposed. Control experiments precluded depletion of a nutritional “locomotion factor(s)” as an explanation for the observed decrease in 3T3 motility. By contrast, SV40 transformants exhibited negligible density inhibition of motility. Data and arguments were presented in support of the hypothesis that the strong density inhibition of motility observed for 3T3 reflected a strong mutual adhesivity of these cells, and that the weak density inhibition of motility observed for SV3T3 reflected a correspondingly weak mutual adhesivity.  相似文献   

17.
The uptake of ouabain-sensitive 86Rb+ uptake measured at 5 min and the uptake measured at 60 min was 4.5- and 2.7-fold greater respectively for SV40 transformed 3T3 cells compared to 3T3 cells during the late log phase of growth. This uptake, however, varied markedly with cell growth. Ouabain-sensitive 86Rb+ uptake was found to be a sensitive indicator of protein synthesis as measured by total protein content. Cessation of cell growth as measured by total protein content was associated with a decline in ouabain-sensitive 86Rb+ uptake in both cell types. This increased ouabain-sensitive cation transport was reflected in increased levels of (Na+ + K+)-ATPase activity for SV40 3T3 cells, which showed a 2.5-fold increase V but the same Krmm as 3T3 cells.These results are compared with the results of related work. Possible mechanisms for these effects are discussed and how changes in cation transport might be related to alterations in cell growth.  相似文献   

18.
SV40-3T3 cells were exposed in monolayer cultures to 5 × 10−7 M methotrexate (MTX), that inhibited thymidylate synthetase, arrested cell growth without cell killing in 24 h and did not induce single- (ss) or double-strand (ds) breaks in DNA. Following 24, up to 72 h, the poly(ADP-ribose) polymerase content of attached cells was induced by 5 × 10−7 M MTX and the augmentation of the enzyme increased with the time of exposure to the drug. Inhibition of protein or RNA synthesis abolished augmentation of enzymatic activity; so too did the initiation of maximal cell growth by thymidine + hypoxanthine, by-passing the inhibitory site of MTX. Isolation of the ADP-ribosylated enzyme protein by gel electrophoresis identified poly(ADP-ribose) polymerase protein as the molecule that was induced by 5 × 10−7 M MTX. Under identical conditions, the poly(ADP-ribose) polymerase induction in 3T3 cells could not be demonstrated. A possible cell-cycle-dependent biosynthesis of the enzyme protein is proposed in SV40 3T3 cells.  相似文献   

19.
The effect of ouabain on K+ transport was examined in 3T3 and virally transformed 3T3 cells. A 10 min exposure to ouabain (10(-3) M) produced approximately 40% inhibition of the unidirectional K+ influx in all cell lines. In 3T3 cells the response was not significantly altered by up to 70 min exposure to the drug. In contrast, the continued exposure of transformed cells to ouabain produced a time-dependent increase in the K+ influx. This increased influx was shown to be accompanied by an increase in the K+ efflux. The results suggest that, in transformed cells, ouabain produces both an inhibition of Na+-K+ exchange and a stimulation of K+-K+ exchange. The latter was shown to be more readily reversible than the former.  相似文献   

20.
The influence of cell population density and simian virus 40 transformation on the activity of the Na-K pump was studied in mouse fibroblasts cultured in medium supplemented with fetal bovine serum. The activity of the Na-K pump was determined from K+ influx, ethacrynate-sensitive K+ influx, (Na+ + K+)-ATPase assay, and the determinations of intracellular potassium and sodium ion concentrations in these cells. The activity of the Na-K pump was found to decrease in density-inhibited cultures of normal fibroblasts (designated as 3T3 cells), while in the virus-transformed cells (SV3T3) the activity remained fairly constant at all cell population densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号