首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-vitro treatment of preimplantation mouse embryos with spermine and spermidine biosynthesis inhibitor, methylglyoxal-bis-(guanylhydrazone) (MGBG), arrested embryo development at the 8-cell or morula stage. In addition, the embryo DNA synthetic rate, as measured by [3H]thymidine incorporation, was strongly inhibited. The inhibition of blastocyst formation and DNA synthesis by MGBG was readily reversible by an exogenous supply of spermine and/or spermidine to the culture medium. DL-alpha-Methylornithine or DL-alpha-difluoromethylornithine (alpha-DFMO), inhibitors of putrescine biosynthesis, had no effect on embryos cultured for 1 or 2 days, but on the 3rd day embryo DNA synthesis was significantly depressed in the presence of alpha-DFMO. These observations suggest that, during early development of the preimplantation mouse embryo, spermine and spermidine are involved in regulation of embryo growth and DNA synthesis. They may also indicate a role of putrescine at a later stage of mouse embryo development.  相似文献   

2.
The mitogenic action of prolactin in Nb 2 node lymphoma cells was inhibited by two drugs which interfere with polyamine biosynthesis. At concentrations of 0.5 mM and above alpha-difluoromethyl ornithine (DFMO), which inhibits ornithine decarboxylase and the conversion of ornithine to putrescine, significantly attenuated the mitogenic effect of prolactin. This inhibition was prevented by the addition of putrescine, spermidine, or spermine to the culture medium. At concentrations of 1 microM and above methylglyoxal bis(guanylhydrazone) (MGBG), which inhibits S-adenosylmethionine decarboxylase and hence the conversion of putrescine to spermidine and spermine, abolished the mitogenic action of prolactin. This inhibition was prevented by the addition of spermidine or spermine, but not putrescine, to the culture medium. These studies show that ongoing polyamine biosynthesis is essential for prolactin to express its mitogenic effect in this lymphoma cell line.  相似文献   

3.
The effects of methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of polyamine biosynthesis were studied on tuberization and cellular polyamine content using in vitro Solanum tuberosum (cv Binjte) plants. When MGBG was added to the culture medium, it produced a partial inhibition of the growth of stems and leaves; it totally blocked rhizogenesis and strongly stimulated tuber formation. Morphogenetic effects of MGBG were correlated to a 40 % decrease in free putrescine, spermidine, spermine content of the leaves and to a 28 % decrease in spermidine titer of the stems. In the tubers, this inhibitor did not change the free polyamine titer but increased by up to 85 % the titer of conjugated putrescine, spermidine, spermine. When the plants were grown in the dark, MGBG produced, like benzyladenine, a stimulation of the rate of tuberization and enhanced the content of conjugated polyamines in the tuber. These results support the hypothesis that polyamines play an important role in the morphogenesis of potato plants. The role of polyamine conjugation in tuber development is discussed.  相似文献   

4.
An attempt was made to identify some of the hormonal factors that control adventitious root formation in our Prunus avium micropropagation system in order to improve rooting in difficult-to-root genotypes. Changes in endogenous contents of free polyamines were determined at intervals during auxin-induced rooting of shoot cultures. Accumulation of putrescine and spermidine peaked between days 9 and 11. Spermine was only present in traces, Exogenously supplied putrescine or spermine (50-500 μM), in the presence of optimal or suboptimal levels of indolebutyric acid (IBA), had no effect on rooting percentage or root density, except for spermine at 500 μM. At this external concentration spermine caused a substantial accumulation in both free spermine and putrescine. The use of several inhibitors of polyamine biosynthesis, namely α-difluoromethylornithine (DFMO), α-difluoromethylarginine (DFMA), dicyclohexylammonium sulphate (DCHA) and methylglyoxal-bis-guanyl-hydrazone (MGBG) alone or in combination in the 0.1 to 5 μM range, resulted in an inhibition of rooting that was partially reversed by the addition of the corresponding polyamine. Cellular polyamine levels were significantly reduced by DFMO and DFMA but not by DCHA and MGBG, Labeled putrescine incorporation into spermidine increased somewhat in the presence of the ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG). A system based on [3,4-14C]methionine incorporation was used to measure ethylene synthesis by the in vitro cultured shoots. Label incorporation was drastically reduced by 10 μM AVG and increased 3.5-fold in the presence of 50 μM IBA with respect to controls (no IBA). Labeled methionine incorporation into spermidine increased to some extent when ethylene synthesis was inhibited by AVG. Adding the ethylene precursor 1-aminocyclopropane-l-carboxylic acid (ACC) to the rooting medium significantly inhibited rooting percentage; AVG caused the formation of a greater number of roots per shoot but delayed their growth. Supplying the shoots with both compounds resulted in an intermediate rooting response, in which both rooting percentage and root density were affected. These results indicate that polyamines may play a significant role at least in some stages of root formation. The polyamine and ethylene biosynthetic pathways seem to be competitive but under our conditions, the enhancement of one pathway when the other was inhibited, was not dramatic. Although IBA promoted ethylene synthesis, AVG, which drastically reduced it, also promoted root formation. Thus, the auxin effect on root induction cannot be directly related to its ability to enhance ethylene synthesis.  相似文献   

5.
Polyamine degradation in foetal and adult bovine serum.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Using protein-separative chromatographic procedures and assays specific for putrescine oxidase and spermidine oxidase, adult bovine serum was found to contain a single polyamine-degrading enzyme with substrate preferences for spermidine and spermine. Apparent Km values for these substrates were approx. 40 microM. The apparent Km for putrescine was 2 mM. With spermidine as substrate, the Ki values for aminoguanidine (AM) and methylglyoxal bis(guanylhydrazone) (MGBG) were 70 microM and 20 microM respectively. 2. Bovine serum spermidine oxidase degraded spermine to spermidine to putrescine and N8-acetylspermidine to N-acetylputrescine. Acrolein was produced in all these reactions and recovered in quantities equivalent to H2O2 recovery. 3. Spermidine oxidase activity was present in foetal bovine serum, but increased markedly after birth to levels in adult serum that were almost 100 times the activity in foetal bovine serum. 4. Putrescine oxidase, shown to be a separate enzyme from bovine serum spermidine oxidase, was present in foetal bovine serum but absent from bovine serum after birth. This enzyme displayed an apparent Km for putrescine of 2.6 microM. The enzyme was inhibited by AM and MGBG with Ki values of 20 nM. Putrescine, cadaverine and 1,3-diaminopropane proved excellent substrates for the enzyme compared with spermidine and spermine, and N-acetylputrescine was a superior substrate to N1- or N8-acetylspermidine.  相似文献   

6.
Following growth stimulation of rat embryo fibroblast (REF) cells previously arrested in G1 by serum deprivation, there occurs a large increase in the synthesis of the polyamines putrescine, spermidine and spermine. Methylglyoxal bis(guanylhydrazone) (MGBG), a potent inhibitor of S-adenosylmethionine decarboxylase can block the accumulation of both spermidine and spermine over a period of several days. Under such conditions REF cells treated with MGBG will approximately double in number and then become growth-arrested again predominantly in the G1 phase of the cell cycle. REF cells therefore appear to contain sufficient spermidine and spermine to progress through one cell cycle before the intracellular levels of these polyamines is reduced sufficiently to arrest growth in the absence of continued polyamine synthesis. Limitation of intracellular polyamine levels is therefore not the mechanism by which deprivation of serum growth factors arrests cell growth. While continued growth is nevertheless dependent on polyamine synthesis, this cell type is capable of limited proliferation in its absence. Addition of spermidine or spermine to MGBG-arrested REF cells results in a rapid resumption of proliferation demonstrating that either polyamine can fulfill the role played by these polyamines in the growth process. Low levels of spermidine and spermine therefore arrest this cell type at a resriction point in G1 at which it is decided whether the intracellular level of these polyamines is sufficiently high to enable a cell to enter into and complete a new cell cycle. This polyamine-sensitive restriction point is considered to be analogous to the restriction point(s) in G1 at which serum and nutrient limitation act.  相似文献   

7.
8.
9.
Methylglyoxal bis(guanyl hydrazone) (MGBG) and the related diamidine compounds berenil and pentamidine inhibited multiplication of A. culbertsoni. The growth inhibition by MGBG (2.5 mM) in the peptone medium was accompanied by the disappearance of spermidine and a marked reduction in the level of diaminopropane. MGBG and berenil completely inhibited growth in a chemically defined medium at 1 mM and 1-2 microM concentration, respectively. However, there was no decrease in the polyamine levels in the early stages of growth inhibition by these agents. Uptake of putrescine, spermidine and spermine by A. culbertsoni has been demonstrated but addition of exogenous polyamines did not reverse the growth inhibitory action of MGBG and berenil. Inhibition of S-adenosylmethionine decarboxylase and decrease in polyamine synthesis do not seem to be the primary targets for the antiamoebic action of MGBG and berenil.  相似文献   

10.
—Polyamine metabolism of mouse neuroblastoma cells grown in culture was studied with special reference to the synthesis of GABA from putrescine and putreanine from spermidine. This study shows that neuroblastoma cells in the presence of a complete culture medium containing calf serum readily metabolized [14C]putrescine to GABA; the rate of synthesis is similar to the rate of synthesis of spermidine from putrescine. In the absence of serum the conversion of putrescine to GABA is minimal. In the presence of serum GABA formation is completely inhibited by the diamine oxidase inhibitor aminoguanidine. GABA synthesis does not occur in the absence of cells. The GABA synthesized is not readily metabolized to succinate or homocarnosine. Mouse neuroblastoma cells metabolized [14C]ornithine to putrescine, GABA, and spermidine. Spermidine was metabolized to putrescine, putreanine and spermine.  相似文献   

11.
The effects of two inhibitors of polyamine (spermidine and spermine) biosynthesis, cyclohexylamine (CHA; 5 and 10 mM) and methylglyoxal(bis-guanylhydrazone) (MGBG; 0.1, 0.5 and 1 mM), on the organogenic response in vegetative bud-forming tobacco (Nicotiana tabacum L. cv. Samsun) thin layer explants were evaluated micro- and macroscopically at different times during culture. The final number of buds formed and the percentage of organogenic explants was significantly reduced by both inhibitors, but much more so by MGBG than CHA. This inhibitory effect was already evident in MGBG-treated explants on day 5, in terms of the number of meristemoids per explant. On the contrary, in the presence of CHA, the number of meristemoids on day 5 was higher than that in the controls. Between days 9 and 13, meristemoid formation slowed down considerably in inhibitor-treated explants compared with controls. On day 13, the number of bud primordia was similar in control and CHA-treated explants, but significantly lower in MGBG-treated explants. This inhibitor also induced peculiar cytohistological events, such as a reduced formation of oval-shaped cell aggregates on the explant surface and more frequent cases of nucleolar extrusion, while CHA led to the appearance of hypertrophic epidermal cells; callus formation at the basal end of the explant and xylogenesis were also affected by the inhibitors. Ethylene biosynthesis, measured as [ C]methionine incorporation, was stimulated 2- (day 2) to 3-fold (15 h) by 0.5 mM MGBG, whereas CHA (10 mM) had little effect and aminoethoxyvinylglycine (AVG; 0.1 μM), an ethylene synthesis inhibitor, was strongly inhibitory. In control explants, the incorporation of labelled methionine into ethylene and spermidine followed an inverse trend up to day 8. In these explants, free putrescine increased 32-fold and spermidine increased about 10-fold between days 0 and 8. Trichloroacetic acid (TCA)-soluble conjugated putrescine also accumulated dramatically during culture. While CHA provoked a decline in spermidine levels, MGBG caused an unexpected increase in free spermidine and spermine titres; however, its most conspicuous effect was on the further enhancement of putrescine conjugate accumulation, while CHA and AVG had the opposite effect. Results are discussed in view of establishing a putative link between MGBG-enhanced ethylene synthesis, increased conjugate titres and inhibition of meristemoid formation.  相似文献   

12.
Combined administration of methylglyoxal-bis-guanylhydrazone (MGBG) (25 mg/kg) with difluoromethylornithine (DFMO), or MGBG alone at a higher dose (50 mg/kg), to mice resulted in a decreased white cell count (WBC) in the peripheral blood while DFMO or MGBG alone at a lower dose (25 mg/kg) had no effect. As expected, DFMO alone increased the number of colony forming units spleen (CFU-s), colony forming units diffusion chamber granulocyte (CFU-dg) and colony forming units culture (CFU-c) in the bone marrow. MGBG treatment led to an increase in CFU-dg alone. Combined treatment seemingly had no effect on marrow stem cells. Total tibial and differential counts were not affected by any of the treatments. Cell proliferation in diffusion chamber cultures, as judged by CFU-dg colony formation, was impaired by MGBG alone or in combination with DFMO, at dose levels which had no effect or increased the precursor cell number in the bone marrow. This effect was partially reversed with either putrescine or spermidine. Determination of intracellular polyamine concentrations, demonstrated decreased putrescine and spermidine levels after DFMO administration. As expected, MGBG treatment resulted in decreased spermidine and spermine levels, concomitant with an increase in putrescine. In mice which received both agents, rather than only MGBG, after 3 days higher intracellular polyamine concentrations were observed. After 11 days, however, there was no significant difference between the two groups.  相似文献   

13.
The role of polyamines in myoblast proliferation was studied by treating cells of Yaffe's L6 line of rat myoblasts with inhibitors of polyamine synthesis. Both an irreversible inhibitor of ornithine decarboxylase--difluoromethyl-ornithine (DFMO)--and a competitive inhibitor of S-adenosyl-methionine decarboxylase--methylglyoxal-bis(guanylhydrazone) (MGBG)--depressed spermidine levels and inhibited myoblast proliferation. Spermine levels were not significantly depressed by either inhibitor and putrescine levels were decreased only by DFMO. Putrescine and spermidine, but not magnesium, prevented inhibition of myoblast proliferation by DFMO and MGBG; determination of 14C-DFMO uptake in the presence and absence of these compounds demonstrated that they did not reduce the rate or extent of inhibitor uptake and thus prevent its inhibition of ornithine decarboxylase. Thus it seems likely that these inhibitors reduce cell proliferation by inhibiting polyamine formation. Addition of spermidine to the cells led to a substantial reduction in the activity of S-adenosyl-methionine-decarboxylase, suggesting that the enzyme is subject to negative regulation by the products of the polyamine biosynthetic pathway. Unexpectedly, addition of spermidine also increased intracellular putrescine levels; this apparently resulted from conversion of spermidine to putrescine. Addition of putrescine or spermidine in the absence of serum did not increase the rate of myoblast proliferation although it did elevate intracellular polyamine levels as expected. We conclude that some threshold level of one or more polyamines (probably spermidine) is necessary but not sufficient for initiation and maintenance of myoblast proliferation in culture.  相似文献   

14.
Spermine enhances the number of adventitious roots developingon stem cuttings of Phaseolus aureus Roxb. This effect is observedwhen spermine is supplied alone to cuttings or in the presenceof indolebutyric acid (IBA). That concentration most effectivein inducing the rooting response also enhances root growth.Other concentrations tested were without effect on growth. Spermidinedoes not influence root number or growth except at high concentration,when it is inhibitory to number only. Methylglyoxal bis(guanylhydrazone)(MGBG) inhibits rooting and root growth in the presence or absenceof IBA. Treatment of stem-cuttings with IBA leads to enhancedlevels of spermine, spermidine and putrescine in the hypocotylprior to development of any root primordia. MGBG reduces thelevels of spermine and spermidine whilst increasing the levelof putrescine. Furthermore, MGBG prevents the IBA-induced increasein spermine and markedly inhibits that in spermidine. Theseresults are consistent with an essential role for polyaminesand their metabolism in the early events which lead to adventitiousroot development. (Received January 10, 1983; Accepted March 17, 1983)  相似文献   

15.
Abstract. Combined administration of methylglyoxal-bis-guanylhydrazone (MGBG) (25 mg/kg) with difluoromethylornithine (DFMO), or MGBG alone at a higher dose (50 mg/kg), to mice resulted in a decreased white cell count (WBC) in the peripheral blood while DFMO or MGBG alone at a lower dose (25 mg/kg) had no effect. As expected, DFMO alone increased the number of colony forming units spleen (CFU-s), colony forming units diffusion chamber granulocyte (CFU-dg) and colony forming units culture (CFU-c) in the bone marrow. MGBG treatment led to an increase in CFU-dg alone. Combined treatment seemingly had no effect on marrow stem cells. Total tibial and differential counts were not affected by any of the treatments. Cell proliferation in diffusion chamber cultures, as judged by CFU-dg colony formation, was impaired by MGBG alone or in combination with DFMO, at dose levels which had no effect or increased the precursor cell number in the bone marrow. This effect was partially reversed with either putrescine or spermidine. Determination of intra-cellular polyamine concentrations, demonstrated decreased putrescine and spermidine levels after DFMO administration. As expected, MGBG treatment resulted in decreased spermidine and spermine levels, concomitant with an increase in putrescine. In mice which received both agents, rather than only MGBG, after 3 days higher intracellular polyamine concentrations were observed. After 11 days, however, there was no significant difference between the two groups.  相似文献   

16.
Micropropagated poplar shoots rooted 100% on a rooting medium (A) containing NAA, but they did not root in the absence of auxin (NA). Putrescine, but not spermidine and spermine, promoted rooting up to 42% when added to the NA medium. Cyclohexylamine (CHA), an inhibitor of spermine synthase, also promoted (up to 36%) rooting in the absence of auxin. The inhibitors of polyamine biosynthesis DFMA (α-difluoromethylarginine) and DFMO (α-difluoromethylomithine), aminoguanidine (AG) and methylglyoxal-bis-guanylhydrazone (MGBG), inhibited rooting when applied in the presence of auxin and had no effect in its absence.
The rooting inductive phase (in the presence of auxin) was determined by periodical transfer of shoots from A to NA medium, and by changes in peroxidase activity, to be 7 h. Putrescine (not spermidine and spermine) accumulated to a maximum during the inductive phase. Both putrescine and CHA promoted rooting on NA medium when applied during the first 7 h. In contrast DFMA and AG inhibited rooting during this period. The results point to the involvement of putrescine and its Δ1-pyrroline pathway, in the inductive phase of rooting in poplar shoots.  相似文献   

17.
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.  相似文献   

18.
When exposed to hypotonic growth medium, Ehrlich ascites carcinoma cells showed a rapid stimulation of ornithine decarboxylase (EC 4.1.1.17) activity in 4 h, followed by a rise in their putrescine content. This effect was totally abolished by addition of a slightly hypertonic concentration of sodium chloride or sucrose to the medium. The general protein synthesis was unaffected by the hypotonic treatment. The uptake of putrescine and, to a lesser extent, spermidine was enhanced, and the conversion of the radioactive putrescine into spermidine appeared partially inhibited during later stages of the hypotonic treatment. As a result, the half-life of putrescine increased from 2.8 h under isoosmotic conditions to 7.3 h in hypoosmotic medium. Both exogenous ([14C]-putrescine-derived) and endogenous ([14C]ornithine-derived) putrescine degraded at similar rates in control and hypotonic cells, yet the putrescine taken from the medium degraded preferably to nonpolyamine products, while the putrescine synthesized in the cell was converted evenly to spermidine and to other metabolites. Adenosylmethionine decarboxylase activity (EC 4.1.1.50), which provides the second precursor for spermidine and spermine synthesis, was distinctly inhibited in the hypotonic medium. Inhibition was likewise observed in spermidine synthase activity, while spermine synthase was marginally stimulated. It appears that the hypotonic treatment serves a special condition under which not only the formation of putrescine is enhanced dramatically but the cells also attempt to conserve the diamine by preventing its further metabolism to higher polyamines.  相似文献   

19.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

20.
SYNOPSIS. The sensitive dansyl procedure was used to detect putrescine and spermidine, but not spermine and cadaverine, in pleomorphic Trypanosoma brucei. The polyamines were synthesized in vitro from [3H]ornithine, [14C]arginine and [14C]methionine. Proline, agmatine, and citrulline, but not glutamine, glutamic or pyroglutamic acids, stimulated spermidine formation from [14C]methionine. Putrescine and spermidine synthesis occurred rapidly from ornithine: putrescine synthesis peaked in 0.5 h, spermidine in 1 h. Trypanosoma brucei assimilated exogenous 14C-labeled putrescine, spermidine, and spermine; spermidine and spermine were taken up 5 times as rapidly as putrescine. Polyamine syntheses may therefore be a practical target for novel trypanocies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号